长江流域资源与环境 >> 2025, Vol. 34 >> Issue (4): 721-733.doi: 10.11870/cjlyzyyhj202504002

• 区域可持续发展 • 上一篇    下一篇

长江经济带城市土地“降碳减污扩绿增长”效率时空特征及影响因素

杨喜,汪思辰   

  1. (安徽工业大学公共管理与法学院,安徽 马鞍山 243002)
  • 出版日期:2025-04-20 发布日期:2025-04-29

Spatial-temporal Characteristics and Influencing Factors of Efficiency of “Cutting Carbon, Reducing Pollution, Expanding Green” for Urban Land in the Yangtze River Economic Belt

YANG Xi, WANG Si-chen   

  1. (School of Public Administration and Law, Anhui University of Technology, Maanshan 243002, China) 
  • Online:2025-04-20 Published:2025-04-29

摘要: 在绿色低碳发展理念下,探究城市土地“降碳减污扩绿增长”效率的时空特征及影响因素,对推动长江经济带城市土地绿色低碳利用具有重要意义。以2003~2021年108座城市面板数据为基础,运用非期望产出超效率SBM模型、核密度估计、空间自相关和空间面板计量模型,探究长江经济带城市土地“降碳减污扩绿增长”效率时空特征及影响因素。结果表明:(1)长江经济带城市土地“降碳减污扩绿增长”效率总体呈上升趋势,效率值由2003年的0.338增长到2021年的0.677,区域差异呈阶段性特征,城际差异呈扩大化特征,并伴随着极化现象。(2)城市土地“降碳减污扩绿增长”效率在全局空间上呈现出正向空间自相关性,在局域空间上呈现出高-高、低-低、低-高和高-低的4种集聚类型。(3)城市土地“降碳减污扩绿增长”效率具有显著的正向空间溢出效应,本地城市土地“降碳减污扩绿增长”效率每提高1%,可带动邻近城市土地“降碳减污扩绿增长”效率提升0.155%。(4)空间效应分解结果上看,各影响因素对城市土地“降碳减污扩绿增长效率”具有不同的直接效应和溢出效应。因此,长江经济带城市土地“降碳减污扩绿增长效率”提升,需要考虑城际之间的空间相关性和空间溢出效应,发挥城际之间协同作用。

Abstract: Under the concept of green and low-carbon development, it is of great significance to explore the spatial-temporal characteristics and the influencing factors of the efficiency of “cutting carbon, reducing pollution, expanding green” for urban land. Based on a panel dataset covering 108 cities from 2003 to 2021 in the Yangtze River Economic Belt, the undesirable output super-efficiency SBM model, kernel density estimation, spatial autocorrelation analysis, and spatial panel econometric models were used in this study. Findings found that: (1) The efficiency values showed an overall upward trend, with values rising from 0.338 in 2003 to 0.677 in 2021. These valuesshowed stage-specific characteristics in regional disparities and widening intercity differences, along with polarization phenomena. (2) Positive spatial autocorrelation was evident at the global level, whereas at the local scale, four types of agglomeration patterns were identified, i.e. high-high, low-low, low-high, and high-low. (3) A significant positive spatial spillover effect was confirmed, where a 1% increase in efficiency of “cutting carbon, reducing pollution, expanding green” induced a 0.155% rise in neighboring cities. (4) Spatial effect decomposition disclosed varying direct and indirect effects of influencing factors on the efficiency. Therefore, it was necessary to consider the spatial correlations and spillover effects among cities to enhance the efficiency of urban land changes in the Yangtze River Economic Belt.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!