长江流域资源与环境 >> 2009, Vol. 18 >> Issue (9): 849-.

• 生态环境 • 上一篇    下一篇

基于BP神经网络泥石流沟发育阶段的判定

庄建琦1,2,3| 崔鹏1,2   

  1. (1.中国科学院水利部成都山地灾害与环境研究所| 四川 成都 610041; 2.中国科学院山地灾害与地表过程重点实验室| 四川 成都 610041; 3.中国科学院研究生院|北京 100039)
  • 出版日期:2009-09-20

DETERMINATION ON EVOLUTION STAGE OF DEBRIS FLOW GULLY BASED ON BP NEURAL NETWORK

ZHUANG Jianqi1,2,3| CUI Peng1,2   

  1. (1.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China;2.Key Laboratory of Mountain Hazards and Surface Process, Chinese Academy of Sciences, Chengdu 610041, China;3.Graduate University, Chinese Academy of Sciences, Beijing 100039, China)
  • Online:2009-09-20

摘要:

泥石流沟谷发育阶段的判定是进行泥石流预测、评价和防治的第一步,它影响着泥石流发生的规模与频度。利用人工智能BP神经网络,选取流域地貌上的面积、主沟长、沟床比降、山坡平均坡度、相对高差、圆状率和相对切割程度等这7个因素作为泥石流沟谷发育阶段评价的指标,并将泥石流沟发育阶段分为4个等级——幼年期、发展期、活跃期和衰退期。利用成昆铁路80条泥石流沟资料,将数据进行预处理(系统分类、标准化),对其进行网络训练建立预测模型,通过模拟,平均相对误差为8.22%,模拟结果达到要求。并利用该模型对昆东铁路沿线的6条泥石流沟进行了泥石流沟发育阶段的判定,结果表明这6条泥石流沟均处于发育的活跃阶段,其发育阶段值为3.0~3.5,因此要加强对这6条泥石流沟的监测和预防工作,避免引起灾难的发生。结果可为泥石流预测、评价和防治提供理论基础和技术支撑.

关键词: 泥石流发育阶段/BP神经网络/ 预测/ 昆东铁路

Abstract:

The determination of evolution stage of debris flow gully is the first step of forecasting,evaluation and control of debris flow and the scope and frequency of the debris flow.Utilizing artificial threeply intelligenceBP neural network model,then selecting catchment area,main groove length,groove gradient ratio,average aspect,relative height difference,round ratio and relative cutting degree of the catchment evolution geomorphology as assessment index of the evolution stage of debris flow gully,the stage of debris flow gully was divided into four stages:young stage、developing stage、active period and decline stage.Authors pretreated the 80 debris flow data along Chengkun railway in Sichuan province (systematic classification、standardization) in order to avoid artificial error,secondly,network training the 80% of the data,and then built forecasting model,the simulation of the residual 20% of the data shows that the average relative error is 8.22% with satisfactory result.The evolution stage of the 6 debris flow gullies along Kundong railway was determined based on the model,the result showed that:the 6 debris flow gullies are in active period and the evolution score is between 3~3.5,so the monitor and forecast should be strengthened in these six debris flow gullies in order to avoid disasters.The intelligenceBP neural network model can be used as an advantageous method to determinate the evolution stage of debris flow gully.The result can provide theoretical basis and technical support for debris flow forecasting,evaluation and control.

Key words: evolution stage of debris flow/BP neural network/forecasting/Kundong railway

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 梅 艳, 刘友兆, 梁流涛. 基于相对承载力的区域可持续发展研究——以江苏省为例[J]. 长江流域资源与环境, 2008, 17(3): 341 .
[3] 张文广,胡远满, 刘 淼,杨兆平,常 禹,李秀珍,杨 孟,问青春, . 基于土地利用变化的生态服务价值损益估算——以岷江上游地区为例[J]. 长江流域资源与环境, 2007, 16(6): 821 .
[4] 高凯, 周志翔, 杨玉萍. 长江流域土地利用结构及其空间自相关分析[J]. 长江流域资源与环境, 2010, 19(z1): 13 .
[5] 刘波, 成长春. 江苏沿海地区经济联系及物流要素流量空间特征分析[J]. 长江流域资源与环境, 2012, 21(06): 653 .
[6] 郝 莹 |鲁 俊 |温华洋 |郑媛媛 |卢燕宇. 安徽省近49年短历时强降水事件趋势变化特征[J]. 长江流域资源与环境, 2012, 21(9): 1143 .
[7] 王 苗 |郭品文 |邬 昀. ENSO对我国东部极端降水的季节影响[J]. 长江流域资源与环境, 2013, 22(06): 808 .
[8] 刘瑶, 江辉, 方玉杰, 王静岚, 闫喜凤. 基于SWAT模型的昌江流域土地利用变化对水环境的影响研究[J]. 长江流域资源与环境, 2015, 24(06): 937 -942 .
[9] 曾泽国, 张笑辰, 刘观华, 金杰峰, 陈家宽, 金斌松. 鄱阳湖子湖"堑秋湖"渔业资源结构特征分析[J]. 长江流域资源与环境, 2015, 24(06): 1021 -1029 .
[10] 袁文德, 郑江坤. 1962~2012年西南地区极端温度事件时空变化特征[J]. 长江流域资源与环境, 2015, 24(07): 1246 -1254 .