长江流域资源与环境 >> 2015, Vol. 24 >> Issue (04): 684-.doi: 10.11870/cjlyzyyhj201504021

• 生态环境 • 上一篇    下一篇

挺水植物水田芥对镉的积累特性研究

林立金1,2,罗丽1,廖明安1*,张潇1,杨代宇1   

  1. 1.四川农业大学园艺学院,四川 雅安 625014;2.雅安水土保持生态环境监测分站,四川 雅安 625000
  • 出版日期:2015-04-20

CADMIUM ACCUMULATION CHARACTERISTICS OF EMERGED PLANT NASTURTIUM OFFICINALE R.BR.

LIN Lijin1,2,LUO Li1,LIAO Mingan1,ZHANG Xiao1,YANG Daiyu1   

  1. 1.College of Horticulture,Sichuan Agricultural University,Ya’an 625014,China; 2.Ya’an Soil and Water Conservation Monitoring Substation,Ya’an 625000,China
  • Online:2015-04-20

摘要:

通过前期的初步研究发现,挺水植物水田芥(Nasturtium officinale R.Br.)地上部分镉含量超过了超富集植物的临界值(100 mg/kg),可能是镉超富集植物。为进一步了解水田芥在不同镉浓度梯度条件下的镉积累特性,通过盆栽试验研究了不同土壤镉浓度(0、25、50、75、100 mg/kg)对水田芥生长特性、镉耐性和镉积累特性的影响。结果表明:随土壤镉浓度的增加,水田芥根系和地上部分镉含量增大,分枝数量、根系生物量、地上部分生物量、抗性系数及叶绿素SPAD值均呈降低的趋势。当土壤镉浓度大于0 mg/kg时,随着土壤镉浓度的增加,水田芥的根冠比呈增加的趋势。土壤镉浓度为50~100 mg/kg时,水田芥地上部分镉含量均大于100 mg/kg,最大值为21484 mg/kg(土壤镉浓度为100 mg/kg),地上部分富集系数(BCF)大于1,但转运系数(TF)小于1。在土壤镉浓度为50 mg/kg时,水田芥地上部分镉积累量达到最大值,为192233 μg/株。因此,水田芥是一种镉富集植物,适合用于土壤镉污染浓度在50 mg/kg以内的水田修复。

Abstract:

The emerged plant Nasturtium officinale R. Br. is a wild vegetable widely distributed in Europe, Asia and North America, and can grow rapidly in nutritious water. In a preliminary study, the cadmium content in shoot of N.of〖KG-*7〗ficinale reached 133.52 mg/kg when the dose of cadmium was 60 mg/kg in soil, exceeding the critical value of a Cdhyperaccumulator (100 mg/kg), indicating that this plant might be a Cdhyperaccumulator. To further the understanding on the cadmium accumulation characteristics of N.of〖KG-*7〗ficinale under various concentrations of cadmium and identify whether this plant is a Cdhyperaccumulator, a pot experiment with cadmium concentration gradient (0, 25, 50, 75, 100 mg/kg) in soil was conducted to study the growth characteristics, the cadmium tolerance and the cadmium accumulation characteristics of N.of〖KG-*7〗ficinale. The results were showed as follows. The cadmium contents in root and shoot of N.of〖KG-*7〗ficinale increased with the increase of cadmium concentration in soil, while the number of branches, the root biomass, the shoot biomass, the chlorophyll SPAD value and the resistance coefficient decreased. The leaves of N.of〖KG-*7〗ficinale appeared yellow when the concentration of cadmium in the soil was greater than 50 mg/kg, and the area of yellow leaf increased with the increasing cadmium concentration in soil, indicating that N.of〖KG-*7〗ficinale had been seriously poisoned by cadmium at these high doses. When the cadmium concentrations in soil were greater than 0 mg/kg, the root/shoot ratio of N.of〖KG-*2/5〗ficinale showed an increasing trend with the increasing concentration of cadmium in soil, indicating that N.of〖KG-*7〗ficinale could increase the proportion of root biomass to enhance the tolerance to cadmium stress. The cadmium content in shoot of N.of〖KG-*7〗ficinale exceeded 100 mg/kg when the dose of cadmium was more than 50 mg/kg in soil, up to the maximum of 214.84 mg/kg (100 mg/kg cadmium in soil). The shoot bioconcentration factor (BCF) of N.of〖KG-*7〗ficinale was greater than 1 and increased with the increase of cadmium concentration in soil. The translocation factor (TF) of N.of〖KG-*7〗ficinale was less than 1 and decreased with the increase of cadmium concentration in soil. The cadmium extraction in root of N.of〖KG-*7〗ficinale was increased with the increase of cadmium concentration in soil. The cadmium extraction in shoot of N.of〖KG-*7〗ficinale was increased when the dose of cadmium was no more than 50 mg/kg in soil, and decreased when the dose of cadmium was more than 50 mg/kg in soil. The amount cadmium extraction of N.of〖KG-*7〗ficinale got the maximum at the dose of 50 mg/kg cadmium in soil, reached 192.23 μg/plant. In field investigation, we found that N.of〖KG-*7〗ficinale had strong tillering ability, easily survived by cutting, and suitable for mowing. Therefore, N.of〖KG-*7〗ficinale is a Cdaccumulator, and could be used to remediate Cdcontaminated less than 50 mg/kg paddy field soil. In addition, N.of〖KG-*7〗ficinale could not be as wild vegetable to eat in cadmium contaminated areas.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 唐 琦,虞孝感. 长江三角洲地区经济可持续发展问题初探[J]. 长江流域资源与环境, 2006, 15(3): 269 -273 .
[3] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[4] 王海云,高太忠,高京,黄群贤. 基于AHPLP法的南水北调中线水资源优化配置[J]. 长江流域资源与环境, 2007, 16(5): 588 .
[5] 张 燕, 张 洪, 彭补拙. 土地资源、环境与经济发展的协调性评价[J]. 长江流域资源与环境, 2008, 17(4): 529 .
[6] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[7] 黄锡生,唐绍均. 三峡库区环境安全保护法律实施机制探讨[J]. 长江流域资源与环境, 2004, 13(6): 611 -615 .
[8] 张孝飞,林玉锁,俞 飞,李 波. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 14(4): 512 -515 .
[9] 廖富强,刘 影, 叶慕亚,郑 林. 鄱阳湖典型湿地生态环境脆弱性评价及压力分析[J]. 长江流域资源与环境, 2008, 17(1): 133 .
[10] 赵姚阳,濮励杰,胡晓添. BP神经网络在城市建成区面积预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(1): 14 -18 .