长江流域资源与环境 >> 2015, Vol. 24 >> Issue (04): 676-.doi: 10.11870/cjlyzyyhj201504020

• 生态环境 • 上一篇    下一篇

川西亚高山云杉叶凋落物质量损失过程及土壤生物的作用

黄玉梅1,2,杨万勤1,张〓健1*   

  1. 1.四川农业大学生态林业研究所,四川 成都 611130;2.四川农业大学风景园林学院,四川 成都 611130
  • 出版日期:2015-04-20

PROCESS OF LEAF LITTER MASS LOSS AND THE CONTRIBUTIONS OF SOIL ORGANISMS IN PICEA ASPOERATA PLANTATIONS OF WESTERN SICHUAN

HUANG Yumei1,2,YANG Wanqin1,ZHANG Jian1   

  1. 1.Institute of Ecological Forestry,Sichuan Agricultural University,Chengdu 611130,China;
    2.College of Landscape Architecture,Sichuan Agricultural University,Chengdu 611130,China
  • Online:2015-04-20

摘要:

采用分解袋法,研究了川西亚高山云杉纯林与混交林叶凋落物的质量损失过程及土壤动物与微生物的作用。结果如下:(1)云杉叶凋落物分解过程中,土壤动物数量总体呈下降趋势,即土壤动物主要在分解前期发挥作用,其中,大型土壤动物早期以植食性的蛴螬为主,中期以捕食性的石蜈蚣为主,后期以腐食性的马陆为主;中小型土壤动物始终以螨类、跳虫和线虫为优势类群;相关分析表明线虫数量与云杉叶凋落物分解速率相关性最大,大型土壤动物次之。(2)云杉叶凋落物分解过程中,微生物数量总体呈上升趋势,即土壤微生物主要在分解后期发挥作用,进一步相关分析表明真菌数量与云杉叶凋落物分解速率相关性大于细菌和放线菌。(3)云杉纯林叶凋落物分解速率低于混交林,其中分解3、15、21、24个月时,纯林小孔径分解袋失重率分别为混交林的65.51%、95.73%、9891%、94.8%,大孔径分解袋失重率分别为混交林的8983%、9295%、9813%、9713%,即,两类林分小孔径分解袋及凋落物分解前期失重率差异更为明显,表明凋落物分解速率既受底物质量的影响,也和参与分解的土壤生物有关,其中与线虫、大型土壤动物及真菌的数量相关性最大。

Abstract:

Litter decomposition, as one of the important processes in the forest ecosystem, is mainly controlled by climate, forest type, litter quality, and soil organisms. In order to investigate the mass loss rates in for the different mesh sizes of litterbags and analyze the contributions of soil fauna and soil microbe to the litter decomposition, a field experiment using litterbags was conducted in Picea aspoerata pure and mixed plantations of western Sichuan. First, our results showed that the total amount of soil fauna was decreasing during the whole litter decomposition stages, which suggested that soil fauna was the dominant factor of the litter decomposition at the early stage. We also found that the phytophagous soil macrofaunal species during the whole litter decomposition stages appeared earliest, followed by the predatory and saprozoic species. Correlation analysis showed that the correlation coefficient of nematode amount and litter decomposition rate was the highest, followed by that of macrofauna amount. Secondly, quantity of soil microbe was increasing during the whole litter decomposition stages, which meant that the microbe prevailed as the regulator of the litter decomposition at the later stage. Correlation analysis showed that the correlation coefficient of litter decomposition rate with fungus quantity and was higher than those with bacteria and actinomycete. Thirdly, we found that the rates of litter mass loss in P. asperata pure plantation were lower than that of the mixed plantation. The decomposition rates of small mesh litterbags in pure plantation were 65.51%, 95.73%, 98.91%, 94.8% of that in the mixed plantation and the decomposition rates of big mesh litterbags in pure plantation were 89.83%, 92.95%, 98.13%, 97.13% of that in the mixed plantation at 3,15,21,24 months respectively. The difference of the rate of litter mass loss between two forest types was more significant at the early stage than at the later stage and more significant in small mesh litterbags than in big mesh litterbags. Our results inferred that the rates of litter mass loss were influenced not only by the quality of litter, but also by the soil organisms which involved in the litter decomposition, especially nematode, macrofauna and fungus.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[3] 徐俊杰, 何 青, 刘 红, 陈吉余. 2006年长江特枯径流特征及其原因初探[J]. 长江流域资源与环境, 2008, 17(5): 716 .
[4] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232 .
[5] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[6] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21 -25 .
[7] 刘承良, 田 颖, 梁 滨,5. 武汉城市圈产业经济的系统性分析[J]. 长江流域资源与环境, 2009, 18(1): 1 .
[8] 伍新木,廖 丹,严 瑾. 制度创新:依托武汉建设长江中游城市群[J]. 长江流域资源与环境, 2004, 13(1): 1 -6 .
[9] 李翀,廖文根,彭静,叶柏生. 宜昌站1900~2004年生态水文特征变化[J]. 长江流域资源与环境, 2007, 16(1): 76 -80 .
[10] 张心怡,刘 敏,孟 飞. 基于RS和GIS的上海城建用地扩展研究[J]. 长江流域资源与环境, 2006, 15(1): 29 -33 .