长江流域资源与环境 >> 2015, Vol. 24 >> Issue (07): 1168-1176.doi: 10.11870/cjlyzyyhj201507013

• 生态环境 • 上一篇    下一篇

黔中喀斯特石漠化区不同小生境常见木本植物水分来源特征

杜雪莲1,2, 王世杰2,3, 罗绪强2,4   

  1. 1. 贵州财经大学资源与环境管理学院, 贵州 贵阳 550025;
    2. 中国科学院地球化学研究所环境地球 化学国家重点实验室, 贵州 贵阳 55002;
    3. 中国科学院普定喀斯特生态系统观测研究站, 贵州 普定 562100;
    4. 贵州师范学院地理与旅游学院, 贵州 贵阳 550018
  • 收稿日期:2014-06-09 修回日期:2014-09-11 出版日期:2015-07-20
  • 作者简介:杜雪莲(1981~),女,副教授,博士,主要研究方向为喀斯特生态学和环境地球化学.E-mail:duxuelian520@163.com
  • 基金资助:
    国家自然科学基金项目(41203063、31100187);国家重点基础研究发展规划(973)项目(2013CB956700)

CHARACTERISTICS OF WATER SOURCES OF COMMON PLANT SPECIES IN VARIOUS MICROHABITATS IN KARST ROCKY DESERTIFICATION AREA IN CENTRAL GUIZHOU PROVINCE

DU Xue-lian1,2, WANG Shi-jie2,3, LUO Xu-qiang2,4   

  1. 1. Department of Resources and Environment Management, Guizhou University of Finance and Economics, Guiyang 550025, China;
    2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;
    3. Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100;
    4. School of Geography and Tourism, Guizhou Normal College, Guiyang 550018, China
  • Received:2014-06-09 Revised:2014-09-11 Online:2015-07-20

摘要: 选择黔中清镇市王家寨小流域内不同石漠化植物群落,通过分析测定喀斯特小生境内5种常见木本植物,鼠李、火棘、烟管荚蒾、圆果化香和云贵鹅耳枥与其潜在水源稳定性氢氧同位素组成,研究植物水分来源特征,并通过线性混合模型确定水源贡献比,探讨喀斯特小生境植物水分利用对石漠化过程的适应与响应。结果表明:多数情况下,研究区不同小生境内各植物种在雨季同时利用土壤水和表层岩溶带水,对土壤水的利用比例大于表层岩溶带水。各植物种对表层岩溶带水的利用比例随着石漠化的进行而减小。常绿灌木火棘、鼠李和烟管荚蒾在轻度、无石漠化样地同时利用土壤水和表层岩溶带水,但在中、强度石漠化则多利用土壤水,落叶小乔木圆果化香和云贵鹅耳枥在无石漠化同时利用土壤水和表层岩溶带水,而在轻度石漠化样地仅利用土壤水,这跟不同样地植被类型、干扰方式、土壤情况及裂隙发育等不同有关。

关键词: 喀斯特石漠化, 小生境, 水分来源, 稳定氢氧同位素

Abstract: Stable isotope analysis can be used to investigate water sources of plants because of no isotopic fractionation during water uptake by terrestrial plants. Ecosystems in the karst region of southwest China are very fragile due to the thin soil layer and intensive infiltration capacity of rock fracture, which result in a very limited amount of water storage for plant uptake. Water retention in the soil zone and shallow fractured rock zone (subcutaneous) is a key factor for plant growth. However, the source of water for plant growth in karst region remains unclear. Distinction of water sources taken by karst plants is a challenging task for botanists and hydrologists, and has important implications for ecosystem management. In this study, we selected 5 dominant plant species grown in various micro-habitats in the Wangjiazhai catchment, a typical karst desertification area in Guizhou Province. The spatial heterogeneity of plant water sources at niche scale and the response of the heterogeneity to different karst rocky desertification degree were studied. Proportions of water sources for plant uptake were determined by the δD and δ18O values of plant stem water, and the water taken from different soil layers and the subcutaneous zone. The following conclusions were drawn from the analysis: (1) The δD and δ18O values of soil water were significantly different among various micro-habitats, stony surface had the most positive δD and δ18O values, stony crevice had the most negative δD and δ18O values, the others had the medium δD and δ18O values. The δD and δ18O values of soil water were significantly different in soil profile and the δD and δ18O values of soil water in the 0-10 cm layer were more positive than those in the 10-30 cm layer. (2) The plant species absorbed water from both soil layers and subcutaneous zone and these plant species extracted more water from soil layers than subcutaneous zone in rainy seasons in general. The proportion of plants water use from the subcutaneous zone decreased with increasing degree of karst rocky desertification. Pyracantha fortuneana, Rhamnus davurica and Viburnum utile in slight and non karst desertification grade extracted water from both soil layers and subcutaneous zone, while these plants only used water form soil layers in medium and severe grade, and Platycarya longipes and Carpinus pubescens in non karst desertification grade extracted water from both soil layers and subcutaneous zone, while these plants only used water form soil layers in slight grade, which is mainly due to various vegetation types, disturbance regimes, soil conditions and crack growth degree of rocks in different grades plots.

Key words: karst rocky desertification, micro-habitats, water sources, stable hydrogen and oxygen isotopes

中图分类号: 

  • X142
[1] DAWSON T E,MAMBELLI S,PLAMBOECK A H,et al.Stable isotopes in plant ecolocy[J].Annual Review of Ecology and Systematics,2002,33:507.
[2] GONFIANTINI R,GRATZIU S,TONGIORGI E.Oxygen isotopic composition of water in leaves[M]//Isotopes and Radi-ation in Soil-Plant Nutrition Studies.Vienna:Intern.At.Energy Agency,1965:405-410.
[3] WERSHAW R L,FRIEDMAN I,HELLER S J.Hydrogen isotope fractionation of water passing through trees[A]//Hobson FAND SPEERS M.eds.Advances in Organic Geochemistry.NewYork:Pergamon,1966:55-67.
[4] DAWSON T E,EHLERINGE J R.Streamside trees that do not use stream water[J].Nature,1991,350(3):335-337.
[5] PEUELAS J,FILELLA I.Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE Spain[J].Environmental and Experimental Botany,2003,49(2):201-208.
[6] JACKSON R C,CAVELIER J,GOLDSTEIN G,et al.Partitioning of water resources among plants of a lowland tropical forest[J].Oecologia,1995,101:197-203.
[7] VALENTINI R S,MUGNOZZA G E,EHLERINGER J R.Hydrogen and carbon isotope ratios of selected species of a Mediterranean macchia ecosystem[J].Functional Ecology,1992,6:627-631.
[8] CALDWELL M M,RIEHARDS J H.Hydraulic lift:Water eflux from upper roots improves efectiveness of water uptake by roots[J].Oecologia,1989,79:1-5.
[9] DAWSON T E.Hydraulic lift and water use by plants:Implications for water balance,performance and plant-plant interactions[J].Oecologia,1993,95:565-574.
[10] 朱守谦,何纪星,祝小科,等.喀斯特森林小生境特征初步研究[M]//朱守谦.喀斯特森林生态研究(Ⅰ).贵阳:贵州科技出版社,1993:52-62.
[11] 杜雪莲,王世杰.喀斯特石漠化区小生境特征研究——以贵州清镇王家寨小流域为例[J].地球与环境,2010,38(3):255-261.
[12] QUEREJETA J I,ESTRADA-MEDINA H,ALLEN M F,et al.Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate[J].Plant and Soil,2006,287:187-197.
[13] QUEREJETA J I,ESTRADA-MEDINA H,ALLEN M F,et al.Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate[J].Oecologia,2007,152:26-36.
[14] 容 丽,王世杰,俞国松,等.荔波喀斯特森林 4 种木本植物水分来源的稳定同位素分析[J].林业科学,2012,48(7):14-22
[15] 聂云鹏,陈洪松,王克林.石灰岩地区连片出露石丛生境植物水分来源的季节性差异[J].植物生态学报,2011,35(10):1029-1037.
[16] 陈 喜,张志才,容 丽,等.西南喀斯特地区水循环过程及其水文生态效应[M].北京:科学出版社,2014.
[17] 王世杰.喀斯特石漠化-中国西南最严重的生态地质环境问题[J].矿物岩石地球化学通报,2003,22(2): 120-126.
[18] 杜雪莲,王世杰,容 丽.喀斯特石漠化区小生境常见灌木种叶片δ13C值特征[J].应用生态学报,2011,22(12):3094-3100.
[19] BOLLARD E G.Transport in the xylem[J].Annual Review of Plant Physiology,1960,11(7):141-166.
[20] ADAM G.WEST,SHELA J.PATRICKSON and JAMES R.Ehleringer.Water extraction times for plant and soil materials used in stable isotope analysis[J].Rapid Communications in Mass Spectrometry,2006,20:1317-1321.
[21] ZIMMERMANN V,EHHALT D,MUNNICH K O.Soil-water movement and evapotranspiration:Changes in the isotopic composition of water[M]//Proceedings of the Symposium of Isotopes in Hydrology.Intern At Energy As-soc Pub,1966:567-585.
[22] 巩国丽,陈 辉,段德玉.利用稳定氢氧同位素定量区分白刺水分来源的方法比较[J].生态学报,2011,3(24):7533-7541.
[23] BRUNEL J P,WALKER G R,KENNETT-SMITH A K.Field validation of isotopic procedures for determining source water used by plants in a semi-arid environment[J].Journal of Hydrology,1995,167(3):351-368.
[24] 杜雪莲,王世杰.喀斯特高原区土壤水分时空变异分析[J].地球与环境,2008,36(3):193-201.
[25] WILLIAMS P W.Subcutaneous hydrology and the development of doline and cockpit karst.Z Geomorph N F,1985,29(4):463-482.
[26] WILLIAMS P W.The role of the subcutaneous zone in karst hydrology[J].Journal of Hydrology,1983,61(1/3):45-67.
[27] 袁道先.全球岩溶生态系统对比:科学目标和执行计划[J].地球科学进展,2001,16(4):461-466.
[28] WHITE J W C.Stable hydrogen isotope ratios in plants:A review of current theory and some potential applications[A]//RUNDEL P W,EHLERINGER J R,NAGY KA.eds.Ecological Studies.Vol.68.Stable Isotopes in Ecological Research.Heidelberg:Springer-Verlag,1988,142-162.
[29] 周政贤.茂兰喀斯特森林考察综合报告[M]//周正贤主编.茂兰喀斯特森林考察集.贵阳:贵州人民出版社,1987:1-23.
[30] FLANAGAN L B,EHLERINGER J R,MARSHALL J D.Differential uptake of summer precipitation among cooccurring trees and shrubs in a pinyonjuniper woodland.Plant Cell and Environment,1992,15:831-836.
[1] 宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境, 2015, 24(11): 1860-1869.
[2] 张盼盼,胡远满. 喀斯特石漠化及其景观生态学研究展望[J]. 长江流域资源与环境, 2008, 17(5): 808-808.
[3] 李 生,张守攻,姚小华,任华东. 黔中石漠化地区不同土地利用方式对土壤环境的影响[J]. 长江流域资源与环境, 2008, 17(3): 384-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张昌顺,李 昆,马姜明,郑志新. 施肥对印楝人工林生长及土壤肥力的影响[J]. 长江流域资源与环境, 2007, 16(3): 329 .
[2] 赵 伟,谢德体,刘洪斌,. 重庆市景观格局动态变化分析[J]. 长江流域资源与环境, 2008, 17(1): 47 .
[3] 杨德伟,陈治谏,倪华勇,蒋 莉,廖晓勇. 基于能值分析的四川省生态经济系统可持续性评估[J]. 长江流域资源与环境, 2006, 15(3): 303 -309 .
[4] 白仙富,戴雨芡,史正涛. 拉市海流域胁迫因子及其影响[J]. 长江流域资源与环境, 2006, 15(Sup1): 131 -136 .
[5] 霍 莉,王少平,郑丽波. 基于ArcGIS Engine的污染源数据库系统开发与应用[J]. 长江流域资源与环境, 2007, 16(5): 667 .
[6] 刘英华,张世熔, 张素兰, 魏 甦, 肖鹏飞. 成都平原地下水硝酸盐含量空间变异研究[J]. 长江流域资源与环境, 2005, 14(1): 114 -118 .
[7] 郭艳娜 冯新斌 闫海鱼 钱晓莉 孟 博 姚 珩. 乌江流域梯级水库入出库河流中总汞和甲基汞的时空分布[J]. 长江流域资源与环境, 2009, 18(4): 356 .
[8] 曾小凡 翟建青 苏布达 姜 彤 朱 进. 长江流域年平均气温的时空变化特征[J]. 长江流域资源与环境, 2009, 18(5): 427 .
[9] 叶正伟, 朱国传. 洪泽湖流域洪涝灾害演变趋势及其与El Nio事件关系[J]. 长江流域资源与环境, 2009, 18(11): 1086 .
[10] 周文霞, 陈笑媛, 郭旭辉. 土地利用规划环境影响评价的实例研究——以贵州省毕节地区为例[J]. 长江流域资源与环境, 2009, 18(12): 1132 .