长江流域资源与环境 >> 2015, Vol. 24 >> Issue (08): 1425-1433.doi: 10.11870/cjlyzyyhj201508023

• 自然灾害 • 上一篇    下一篇

基于Copula函数的汉江中上游流域极端降雨洪水联合分布特征

陈心池1,2, 张利平1,2, 闪丽洁1, 杨卫1, 徐霞3   

  1. 1. 武汉大学水资源与水电工程国家重点实验室, 湖北 武汉 430072;
    2. 水资源安全保障湖北省 协同创新中心, 湖北 武汉 430072;
    3. 长江水利委员会水资源保护科研所, 湖北 武汉 430051
  • 收稿日期:2014-08-06 修回日期:2014-12-29 出版日期:2015-08-20
  • 作者简介:陈心池(1989~),男,硕士研究生,主要研究方向为水文水资源.E-mail:stephencug@outlook.com
  • 基金资助:
    国家自然科学基金(51339004、51279139);中央高校基本科研业务费专项资金(2042014kf1012、2042014kf0033)

JOINT DISTRIBUTION OF THE EXTREME RAINFALL AND FLOOD FOR THE UPPER-MIDDLE REACHES OF THE HANJIANG RIVER BASED ON COPULA FUNCTION

CHEN Xin-chi1,2, ZHANG Li-ping1,2, SHAN Li-jie1, YANG Wei1, XU Xia3   

  1. 1. State KeyLaboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
    2. Hubei Collaborative Innovation Center for Water Resources Security, Wuhan 430072, China;
    3. Changjiang water resources protection institute, Wuhan 430051, China
  • Received:2014-08-06 Revised:2014-12-29 Online:2015-08-20

摘要: 选取汉江中上游流域作为研究对象,根据流域九个气象站点1969~2008年逐日降雨资料以及丹江口水库同时期日入库流量资料,采用年最大值法(AM)和百分位法两种选样方式选取1 d、3 d降雨和1 d、3 d洪量极值样本,分别运用广义极值分布(GEV)、广义帕累托分布(GPD)、伽玛分布(Gamma)3种极值统计模型对样本进行单变量边缘分布拟合,运用Gumbel、Clayton以及Frank Copula函数模型对样本进行多变量联合分布拟合,遴选出描述流域降雨和洪水联合分布规律的最优概率模型。结果显示:对于AM选样样本,边缘分布为GEV时降雨洪量的二维和三维联合分布Frank Copula函数拟合效果最优;对于百分位选样样本,边缘分布为GPD时降雨洪量的二维联合分布Gumbel Copula函数拟合效果最优,三维联合分布则是Frank Copula函数拟合效果最优;比较二维和三维Copula函数模拟结果,三维联合Copula函数推求的设计值更大,说明三维联合分布考虑了更多的变量和极值信息,能更全面地反映极端降雨洪水事件的真实特征,对工程设计更显安全。

关键词: 极端降雨, 极端洪水, 广义极值分布, 广义帕累托分布, Copula函数

Abstract: The upper-middle reaches of Hanjiang River is chosen to be the research object in this paper, based on the daily precipitation data of 9 meteorological stations in River and the daily runoff data of Danjiangkou reservoir from 1969 to 2008. The maximum 1 day extreme samples and 3 days extreme samples of rainfall and flood were selected by the Annual Maximum (AM) and percentile method. Then these samples are marginal distribution fitted for the single variable to extreme value statistical models respectively, which are named as Generalized Extreme Value (GEV), Generalized Pareto Distribution (GPD) and Gamma distribution. After this, the most suitable distribution model for specific sampling method can be found out from the comparison results of model testing, and it will be a priority selection and verification for the corresponding sampling method in the later work. After the above process, the samples are joint distribution fitted for multivariate to Gumbel Copula function model, Clayton Copula function model and Frank Copula function model, respectively. It contains two-dimensional conjoint distribution and three-dimensional conjoint distribution, finally the optimal probability model which describes joint distribution of rainfall and flood in the basin will be selected. After calculation and analysis, the result showed that: for AM samples, no matter two-dimensional or three-dimensional Copula conjoint distribution, Frank Copula function gives the best fitting result for rainfall and flood when using GEV distribution as marginal distribution; for percentile samples, Gumbel Copula function gives the best fitting results for two-dimension joint distribution and Frank Copula function gives the best for three-dimension joint distribution, both are used the GPD distribution as the marginal distribution. What's more, the design value which is estimated by three-dimensional Copula function is greater than that is from two-dimensional Copula function after comparison of their simulation results. It means that three-dimensional joint distribution takes more variable and extreme information into account, and it can reflect the true feature of extreme rainfall and flood more accurate and more comprehensive, so choosing the three-dimensional joint distribution will be more suitable and safer for engineering design.

Key words: extreme rainfall, extreme flood, generalized extreme value distribution, generalized Parato distribution, Copula function

中图分类号: 

  • P333
[1] IPCC.IPCC Fourth Assessment Report(AK4)[M].Cambridge:Cambridge University Press,2007.
[2] 张利平,杜 鸿,夏 军,等.气候变化下极端水文事件的研究进展[J].地理科学进展,2011,30(11):1370-1379.
[3] 闵 屾,钱永甫.中国极端降水事件的区域性和持续性研究[J].水科学进展,2008,19(6):763-771.
[4] 封国林,杨 杰,万仕全,等.温度破纪录事件预测理论研究[J].气象学报,2009,67(1):61-74.
[5] 郭生练,闫宝伟,肖 义,等.Copula函数在多变量水文分析计算中的应用及研究进展[J].水文,2008,28(3):1-7.
[6] 冉放香,张 翔.多变量水文联合分布方法及Copula函数的应用研究[J].水电能源科学,2010,28(9):8-11.
[7] SHANMUGAM R.Multivariate Models and Dependence Concepts[J].Journal of Mathematical Psychology,1997,46(1):110-114.
[8] NELSEN R B .An Introduction to Copulas:Lectures Notes in Statistics[M].New York:Springer Verlag,1998.
[9] 张利平,杨艳蓉,秦琳琳,等.未来情景下南水北调中线工程水源区极端降水分布特征[J].气候变化研究进展,2013,9(1):29-34.
[10] 杨 珍,张利平,秦琳琳,等.丹江口水库入库洪水变化特征及对未来气候情景的响应分析[J].长江流域资源与环境,2013,22(5):588-594.
[11] JENKINSON A F.The frequency distribution of the annual maximum(or minimum)values of meteorological elements[J].Quarterly Journal of the Royal Meteorological Society,1955, 81(348):158-171.
[12] COLES S,PERICCHI L.Anticipating catastrophes through extreme value modeling[J].Journal of the Royal Statistical Society:Series C(Applied Statistics),2003,52(4):405-416.
[13] COLES S G.An introduction to Statistical modeling extremevalues[M].London,UK:Springer Verlag,2001.
[14] 丁裕国.探讨灾害规律的理论基础:极端气候事件概率[J].气象与减灾研究,2006(1):44-50.
[15] BRABSONB B,PALUTIKOF J P.Tests of generalized Pareto distribution for predicting extreme wind speed[J].Journal of applied meteorology,2000,39(9):1627-1640.
[16] 黄嘉佑.一种用于旱涝分析的降水概率指标——Gamma分布概率指标[J].气象,1990,16(9):8-12.
[17] 谢 华,罗 强,黄介生.基于三维copula函数的多水文区丰枯遭遇分析[J].水科学进展,2012,23(2):186-193.
[1] 叶明华, 汪荣明, 丁越, 束炯. 基于Copula相依函数的安徽省气温与降雨量相关性研究[J]. 长江流域资源与环境, 2017, 26(01): 110-117.
[2] 陈晶, 顾世祥, 何大明, 陈刚. 近60多年来滇池流域干旱特性及重现期分析[J]. 长江流域资源与环境, 2016, 25(09): 1457-1465.
[3] 龚艳冰, 胡娜, 刘高峰, 冯兰萍. 基于GEV干旱指数和DFA方法的苏北地区季节性干旱研究[J]. 长江流域资源与环境, 2016, 25(01): 140-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .