长江流域资源与环境 >> 2016, Vol. 25 >> Issue (09): 1457-1465.doi: 10.11870/cjlyzyyhj201609017

• 自然灾害 • 上一篇    下一篇

近60多年来滇池流域干旱特性及重现期分析

陈晶1, 顾世祥1, 何大明2, 陈刚1,3   

  1. 1. 云南省水利水电勘测设计研究院, 云南 昆明 650021;
    2. 云南大学国际河流与生态安全研究院, 云南 昆明 650091;
    3. 河海大学水文水资源与水利工程科学国家重点实验室, 江苏 南京 210098
  • 收稿日期:2016-01-05 修回日期:2016-03-01 出版日期:2016-09-20
  • 通讯作者: 顾世祥 E-mail:gushxang@qq.com
  • 作者简介:陈晶(1987~),女,工程师,主要从事水文水资源研究.E-mail:xuechen25@126.com
  • 基金资助:
    国家水体污染控制与治理科技重大专项(2013ZX07102-006-01);云南省技术创新人才资助项目(2011CI092)

RETURN PERIOD OF DROUGHT IN DIANCHI BASIN IN LAST 60 YEARS

CHEN Jing1, GU Shi-xiang1, HE Da-ming2, CHEN Gang1,3   

  1. 1. Yunnan Water Conservancy and Hydroelectric Survey Design and Research Institute, Kunming 650021, China;
    2. Institute of international rivers and eco-security, Yunnan University, Kunming 650091, China;
    3. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
  • Received:2016-01-05 Revised:2016-03-01 Online:2016-09-20
  • Supported by:
    Major Science and Technology Program for Water Pollution Control and Treatment (2013ZX07102-006-01);Yunnan Provincial Talent Innovative Program (2011CI092)

摘要: 根据滇池流域3个气象站、3个水文站、2个水位站、14个水库站建站(1950 s)至2014年的逐月(日)气象、水文观测系列,采用标准化降水指数(SPI)、标准化径流指数(SRI)以及干湿指数(Ia)三类干旱指标,按游程理论识别干旱事件、确定干旱历时和干旱烈度两个特征变量;通过小波分析揭示干旱历时和烈度的周期性规律;运用Gumbel Copula函数构建干旱历时和烈度的联合分布,计算干旱联合、同现重现期,及前一场干旱影响下的后一场干旱发生的条件重现期。结果表明,滇池流域干旱趋于严重;气象、水文、农业3类干旱的干旱历时或烈度,均具有100年以上变化周期;近期的干旱(2012-02~2013-04)为1950 s以来最严重干旱,联合、同现重现期分别达120.48和224.41 a,受上一场特大干旱(2009-05~2010-03)的影响,条件重现期高达271.82 a,持续干旱的叠加效应加剧了旱情和灾害程度。从滇池水位变化、区域大气环流异常、三类干旱规律、干旱史料文献及湖泊沉积物等多方面对比分析,印证了成果的科学合理性。

关键词: 滇池流域, 干旱, 重现期, Copula函数, 联合分布

Abstract: Meteorological and hydrological monthly or daily data of 3 meteorological, 3 hydrological, 2 water level and 14 main reservoirs stations in Dianchi Basin from the 1950s to 2014 were collected and analyzed in this paper. First, based on meteorological hydrological and agricultural drought indices, namely SPI, SRI and Ia, drought events were identified and its duration and severity were confirmed through the Runs Theory. Then, the periodic variation regularity of drought duration and severity were revealed using wavelet analysis. Finally, multivariate joint distribution of drought duration and severity was constructed through the Gumbel Copula function, joint and co-occurrence return periods of drought were calculated and conditional return period of one drought event by the influence of anterior drought event was determined. The results showed that in the whole basin, drought disaster was significantly worsening. There has an over 100 year variation period of no matter drought duration or drought severity. The drought in 2012-2013 was the mostly serious drought events and its joint and co-occurrence return periods were 120.48 and 224.41 years, respectively. Its conditional return period by the affection of drought in 2009-2010 was 271.82 years. When drought events were added up, there was an additive effect. Water level process of Dianchi Lake, abnormal region atmospheric circulation, drought historical documents and lake sediments were compared and analyzed, which prove the scientific reasonability of the research accomplishments.

Key words: Dianchi Basin, drought, return period, Copula, joint distribution

中图分类号: 

  • S423
[1] 王林, 陈文. 近百年西南地区干旱的多时间尺度演变特征[J]. 气象科技进展, 2012, 2(4):21-26. [WANG L, CHEN W. Characteristics of Multi-timescale variabilities of the drought over last 100 years in Southwest China[J]. Advances in Meteorological Science and Technology, 2012, 2(4):21-26.]
[2] WANG L, CHEN W, ZHOU W. Assessment of future drought in Southwest China based on CMIP5 multimodel projections[J]. Advances in Atmospheric Sciences, 2014, 31(5):1035-1050.
[3] LI Y G, HE D M, HUA J M, et al. Variability of extreme precipitation over Yunnan Province, China 1960-2012[J]. International Journal of Climatology, 2015, 35(2):245-258.
[4] 杨晓静, 左德鹏, 徐宗学. 基于标准化降水指数的云南省近55年旱涝演变特征[J]. 资源科学, 2014, 36(3):473-480. [YANG X J, ZUO D P, XU Z X. Characteristics of droughts and floods analyzed using the standardized precipitation index in Yunnan Province during the past 55 years[J]. Resources Science, 2014, 36(3):473-480.]
[5] 周玉良, 周平, 金菊良, 等. 基于供水水源的干旱指数及在昆明干旱频率分析中应用[J]. 水利学报, 2014, 45(9):1038-1047. [ZHOU Y L, ZHOU P, JIN J L, et al. Establishment of hydrological drought index based on sources of regional water supply and its application to drought frequency analysis for Kunming[J]. Journal of Hydraulic Engineering, 2014, 45(9):1038-1047.]
[6] GU S X, HE D M, CUI Y L, et al. Spatial variability of irrigation factors and their relationships with "corridor-barrier" functions in the Longitudinal Range-Gorge Region[J]. Chinese Science Bulletin, 2007, 52(S2):33-41.
[7] GHIZZONI T, ROTH G, RUDARI R. Multivariate skew-t approach to the design of accumulation risk scenarios for the flooding hazard[J]. Advances in Water Resources, 2010, 33(10):1243-1255.
[8] 中国气象灾害大典编委会. 中国气象灾害大典:云南卷[M]. 北京:气象出版社, 2006. [China Meteorological Disaster Editorial Board. China meteorological disaster grand ceremony:Yunnan Province[M]. Beijing:China Meteorological Press, 2006.]
[9] 云南省水利水电勘测设计研究院. 云南省历史洪旱灾害史料实录(清宣统三年以前)[M]. 昆明:云南科技出版社, 2008.
[10] 唐一清, 黄英. 云南水旱灾害[M]. 昆明:云南省水利厅, 1999. [TANG Y Q, HUANG Y. Flood and drought in Yunnan Province[M]. Kunming:Water Resources Bureau of Yunnan Province, 1999.]
[11] MCKEE T B, DOESKEN N J, KLEIST J. The relationship of drought frequency and duration to time scales[C]//Proceedings of the 8th Conference of Applied Climatology. Anaheim, California, Boston:American Meteorological Society, 1993:179-184.
[12] VICENTE-SERRANO S M, LÓPEZ-MORENO J I, BEGUERÍA S, et al. Accurate computation of a streamflow drought index[J]. Journal of Hydrologic Engineering, 2012, 17(2):318-332.
[13] WU S H, YIN Y H, ZHENG D, et al. Aridity/humidity status of land surface in China during the last three decades[J]. Science in China Series D:Earth Sciences, 2005, 48(9):1510-1518.
[14] GU S X, HE D M, CUI Y L, et al. Temporal and spatial changes of agricultural water requirements in the Lancang River Basin[J]. Journal of Geographical Sciences, 2012, 22(3):441-450.
[15] YEVJEVICH V. Stochastic processes in hydrology[M]. Colorado, USA:Water Resources Publication, LLC, 1972.
[16] MISHRA A K, SINGH V P. A review of drought concepts[J]. Journal of Hydrology, 2010, 391(1/2):202-216.
[17] 王文圣, 丁晶, 李跃清. 水文小波分析[M], 北京:化学工业出版社, 2005. [WANG W S, DING J, LI Y Q. Hydrology wavelet analysis[M]. Beijing:Chemical Industry Press, 2005.]
[18] SKLAR A. Fonctions de répartition àn dimensions et leurs marges[J]. Publishing Institute of Statistical University of Paris, 1959, 8(2):229-231.
[19] SHIAU J T. Fitting drought duration and severity with two-dimensional copulas[J]. Water Resources Management, 2006, 20(5):795-815.
[20] 韦艳华, 张世英. Copula理论及其在金融分析上的应用[M]. 北京:清华大学出版社, 2008. [WEI Y H, ZHANG S Y. Copula theory and its application in finance analysis[M]. Beijing:Tsinghua University Press, 2008.]
[21] ZHANG L, SINGH V P. Bivariate flood frequency analysis using the Copula method[J]. Journal of Hydrologic Engineering, 2006, 11(2):150-164.
[22] 肖名忠, 张强, 陈晓宏. 基于多变量概率分析的珠江流域干旱特征研究[J]. 地理学报, 2012, 67(1):83-92. [XIAO M Z, ZHANG Q, CHEN X H. Spatial-temporal patterns of drought risk across the Pearl River Basin[J]. Acta Geographica Sinica, 2012, 67(1):83-92.]
[23] 孙国武, 李震坤, 冯建英. 西南地区两次严重干旱事件与大气低频振荡的研究[J]. 高原气象, 2014, 33(6):1562-1567. [SUN G W, LI Z K, FENG J Y. Relationship between atmospheric low-frequency oscillation and two severe drought events in Southwest China[J]. Plateau Meteorology, 2014, 33(6):1562-1567.]
[24] 黄荣辉, 刘永, 王林, 等. 2009年秋至2010年春我国西南地区严重干旱的成因分析[J]. 大气科学, 2012, 36(3):443-457. [HUANG R H, LIU Y, WANG L, et al. Analyses of the causes of severe drought occurring in Southwest China from the fall of 2009 to the spring of 2010[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(3):443-457.]
[25] 周秀华, 肖子牛. 基于CMIP5资料的云南及周边地区未来50年气候预估[J]. 气候与环境研究, 2014, 19(5):601-613. [ZHOU X H, XIAO Z N. Climate projection over Yunnan Province and the surrounding regions based on CMIP5 data[J]. Climatic and Environmental Research, 2014, 19(5):601-613.]
[26] 韩兰英, 张强, 姚玉璧, 等. 近60年中国西南地区干旱灾害规律与成因[J]. 地理学报, 2014, 69(5):632-639. [HAN L Y, ZHANG Q, YAO Y B, et al. Characteristics and origins of drought disasters in Southwest China in nearly 60 years[J]. Acta Geographica Sinica, 2014, 69(5):632-639.]
[27] 钱维宏, 陆波. 千年全球气温中的周期性变化及其成因[J]. 科学通报, 2010, 55(32):3116-3121. [QIAN W H, LU B. Periodic oscillations in millennial global-mean temperature and their causes[J]. Chinese Science Bulletin, 2010, 55(35):4052-4057.]
[28] 葛全胜, 郑景云, 郝志新, 等. 过去2000年中国气候变化研究的新进展[J]. 地理学报, 2014, 69(9):1248-1258. [GE Q S, ZHENG J Y, HAO Z X, et al. State-of-the-arts in the study of climate changes over China for the past 2000 years[J]. Acta Geographica Sinica, 2014, 69(9):1248-1258.]
[29] 宋学良, 李杰森, 张子雄, 等. 距今200年前昆明地区干旱气候期的发现[J]. 云南地理环境研究, 1998, 10(1):20-25. [SONG X L, LI J S, ZHANG Z X, et al. The discovery of an arid climate period 200 years before present in Kunming Region[J]. Yunnan Geographic Environment Research, 1998, 10(1):20-25.]
[1] 叶明华, 汪荣明, 丁越, 束炯. 基于Copula相依函数的安徽省气温与降雨量相关性研究[J]. 长江流域资源与环境, 2017, 26(01): 110-117.
[2] 赵平伟, 郭萍, 李立印, 舒珺. SPEI及SPI指数在滇西南地区干旱演变中的对比分析[J]. 长江流域资源与环境, 2017, 26(01): 142-149.
[3] 刘世杰, 苏舒, 梁亮, 童小华. 基于植被状态指数的干旱化特征及气候驱动因素分析——以江苏省为例[J]. 长江流域资源与环境, 2016, 25(12): 1927-1933.
[4] 龚艳冰, 戴靓靓, 胡娜, 刘高峰, 张继国. 基于云推理和模糊逻辑关系模型的干旱等级预测方法研究[J]. 长江流域资源与环境, 2016, 25(08): 1273-1278.
[5] 李军, 王兆礼, 黄泽勤, 钟睿达, 卓圣峰, 陈希贤. 基于SPEI的西南农业区气象干旱时空演变特征[J]. 长江流域资源与环境, 2016, 25(07): 1142-1149.
[6] 郑太辉, 陈晓安, 杨洁. 近50 a江西省旱、涝变化趋势及驱动因素研究[J]. 长江流域资源与环境, 2016, 25(04): 664-670.
[7] 王婷, 章新平, 黎祖贤, 罗紫东, 廖梦思, 刘娜. 近52年来洞庭湖流域气象干旱的时空分布特征[J]. 长江流域资源与环境, 2016, 25(03): 514-522.
[8] 龚艳冰, 胡娜, 刘高峰, 冯兰萍. 基于GEV干旱指数和DFA方法的苏北地区季节性干旱研究[J]. 长江流域资源与环境, 2016, 25(01): 140-146.
[9] 秦鹏程, 刘敏. 气象干旱诊断评估方法及其在长江中下游地区的应用[J]. 长江流域资源与环境, 2015, 24(11): 1969-1976.
[10] 陈心池, 张利平, 闪丽洁, 杨卫, 徐霞. 基于Copula函数的汉江中上游流域极端降雨洪水联合分布特征[J]. 长江流域资源与环境, 2015, 24(08): 1425-1433.
[11] 赵林, 于家烁, 薄岩, 杨娇, 李汉青. 基于SPEI的湖北省近52年干旱时空格局变化[J]. 长江流域资源与环境, 2015, 24(07): 1230-1237.
[12] 吴志杰, 何云玲. 基于SPEI的云南中部区域干旱时空变化特征分析[J]. 长江流域资源与环境, 2015, 24(07): 1238-1245.
[13] 叶磊, 周建中, 曾小凡, 张海荣, 卢鹏. 气候变化下SPEI指数在嘉陵江流域的干旱评估应用[J]. 长江流域资源与环境, 2015, 24(06): 943-948.
[14] 刘保强, 熊理然, 蒋梅英, 张磊. 滇池流域生态承载力及系统耦合效应剖析[J]. 长江流域资源与环境, 2015, 24(05): 868-875.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李宗尧,|杨桂山. 经济快速发展地区生态环境竞争力的评价方法——以安徽沿江地区为例[J]. 长江流域资源与环境, 2008, 17(1): 124 .
[2] 季永兴. 上海多自然型河流整治实践与探索[J]. 长江流域资源与环境, 2008, 17(2): 264 .
[3] 毛战坡,单保庆,彭文启,王洪军. 氮素在河流生态系统中的滞留研究进展[J]. 长江流域资源与环境, 2006, 15(4): 480 -484 .
[4] 许有鹏,于瑞宏,马宗伟. 长江中下游洪水灾害成因及洪水特征模拟分析[J]. 长江流域资源与环境, 2005, 14(5): 638 -643 .
[5] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[6] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[7] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[8] 陈宁波,王 辉,江洪泽. 市场经济条件下珍贵可再生资源之灭绝探析[J]. 长江流域资源与环境, 2008, 17(4): 556 .
[9] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[10] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .