长江流域资源与环境 >> 2015, Vol. 24 >> Issue (12): 2100-2107.doi: 10.11870/cjlyzyyhj201512014

• 生态环境 • 上一篇    下一篇

长江中下游流域旱涝急转时空演变特征分析

闪丽洁1, 张利平1,2, 陈心池1, 杨卫1   

  1. 1. 武汉大学水资源与水电工程科学国家重点实验室, 湖北 武汉 430072;
    2. 水资源安全保障湖北省协同创新中心, 湖北 武汉 430072
  • 收稿日期:2015-03-11 修回日期:2015-07-22 出版日期:2015-12-20
  • 通讯作者: 张利平 E-mail:zhanglp@whu.edu.cn
  • 作者简介:闪丽洁(1991~),女,硕士研究生,主要从事水文气象研究.E-mail:shanlijie0701@163.com
  • 基金资助:
    国家自然科学基金项目(51339004)"旱涝急转发生机理与减灾方法研究";国家自然科学基金项目(51279139)"流域水文极端事件时空演变特征及其对气候变化的影响机理"

SPATIO-TEMPORAL EVOLUTION CHARACTERISTICS OF DROUGHT- FLOOD ABRUPT ALTERNATION IN THE MIDDLE AND LOWER REACHES OF THE YANGTZE RIVER BASIN

SHAN Li-jie1, ZHANG Li-ping1,2, CHEN Xin-chi1, YANG Wei1   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
    2. Hubei Collaborative Innovation Center for Water Resources Security, Wuhan 430072, China
  • Received:2015-03-11 Revised:2015-07-22 Online:2015-12-20

摘要: 基于长江中下游流域75个雨量站1960~2012年的日降水资料,通过定义长、短周期旱涝急转指数,全面地分析了长江中下游流域旱涝急转的趋势变化和时空分布特征。研究结果表明:(1)长周期旱涝急转表现为以涝转旱事件为主,且存在由旱涝急转事件向全旱或全涝事件过渡的趋势,短周期的旱涝急转发生频率较高的也是涝转旱事件;(2)长江中下游北岸多发生旱转涝事件,南岸则多发生涝转旱事件;(3)1998年和2011年6~7月短周期高强度旱转涝事件发生在长江北岸,涝转旱事件发生在南岸地区;5~6月与7~8月旱涝急转事件强度分布则呈相反状态;(4)总体来说,长、短周期涝转旱频次呈现不断减小的趋势,旱转涝有轻微增加的趋势。7~8月则较为特殊,湘江流域涝转旱有增加的趋势,洞庭湖地区涝转旱显著增加,此研究结果可以为长江中下游流域防洪抗旱工作提供一定的依据。

关键词: 长江中下游流域, 旱涝急转, 时空演变

Abstract: Based on the daily precipitation data from 75 rainfall gauging stations covering 1960-2012 in the middle and lower reaches of the Yangtze River Basin, the trend variation and temporal and spatial distribution characteristics of drought-flood abrupt alternation was analyzed by using long-cycle drought-flood abrupt alternation index(LDFAI) and short-cycle drought-flood abrupt alternation index(SDFAI). The results are as follows: 1) Flood to drought abrupt alternation events are the main performance of the long-cycle drought-flood abrupt alternation (LDAF), as well as the short-cycle drought-flood abrupt alternation (SDFA); 2) The north shore of the middle and lower reaches of the Yangtze River tend to occur drought to flood events, while the south shore tend to occur flood to drought events; 3) Intensive short-cycle drought to flood abrupt alternation events during June to July in 1998 and 2011 occurred in the north shore of the Yangtze River, and flood to drought events occurred in the south shore. However, intensity distribution of drought-flood abrupt alternation events during periods of May to June and July to August was just the opposite to that during June to July; 4) In general, both the occurrence of long and short-cycle flood to drought abrupt alternation events shows decreasing trends, while the drought to flood abrupt alternation events are on the rise. It is worth noting that the trend during July to August is somewhat special. Drought to flood abrupt alternation events are increasing in the Xiangjiang River Basin, and increasing significantly in the Dongting Lake region, which may provide a preferable reference for the work of the Yangtze River flood and drought management.

Key words: the middle and lower Yangtze River Basin, drought-flood abrupt alternation, spatio-temporal evolution

中图分类号: 

  • P426.6
[1] DAI A G, TRENBERTH K E, KARL T R. Global variations in droughts and wet spells: 1900-1995[J]. Geophysical Research Letters, 1998, 25(17): 3367-3370.
[2] FRICH P, ALEXANDER L V, DELLA-MARTA P, et al. Observed coherent changes in climatic extremes during the second half of the twentieth century[J]. Climate Research, 2002, 19(3): 193-212.
[3] 黄荣辉,孙凤英.热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响[J].大气科学,1994,18(2):141-151.
[4] 陈隆勋,朱乾根,罗会邦,等.东亚季风[M].北京:气象出版社,1991.
[5] 龚道溢,朱锦红,王绍武.长江流域夏季降水与前期北极涛动的显著相关[J].科学通报,2002,47(7):546-549.
[6] JU J H, LV J M, CAO J, et al. Possible impacts of the Arctic oscillation on the interdecadal variation of summer monsoon rainfall in East Asia[J]. Advances in Atmospheric Sciences, 2005, 22(1): 39-48.
[7] 吴志伟,李建平,何金海,等.大尺度大气环流异常与长江中下游夏季长周期旱涝急转[J].科学通报,2006,51(14):1717-1724.
[8] 封国林,杨涵洧,张世轩,等.2011年春末夏初长江中下游地区旱涝急转成因初探[J].大气科学,2012,36(5):1009-1026.
[9] 王 胜,田 红,丁小俊,等.淮河流域主汛期降水气候特征及"旱涝急转"现象[J].中国农业气象,2009,30(1):31-34.
[10] 孙 鹏,刘春玲,张 强.东江流域汛期旱涝急转的时空演变特征[J].人民珠江,2012,5(6):29-34.
[11] 沈柏竹,张世轩,杨涵洧,等.2011年春夏季长江中下游地区旱涝急转特征分析[J].物理学报,2012,61(10):1-11.
[12] 张水锋,张金池,闵俊杰,等.基于径流分析的淮河流域汛期旱涝急转研究[J].湖泊科学,2012,24(5):679-686.
[13] 马巧英.1998年我国天气气候的主要特点及其影响[N/OL].中国气象报.[1989-01-01].http://www.cma.gov.cn/kppd/kppdqxsj/kppdtqqh/201212/t20121211_195271.html.
[14] 张天宇,孙照渤,倪东鸿,等.近45 a长江中下游地区夏季降水的区域特征[J].南京气象学院学报,2007,30(4):530-537.
[15] 鲁 帆,严登华,王 勇,等.中长期径流预报技术与方法[M].北京:中国水利水电出版社,2012.
[1] 李话语, 徐磊, 李帆, 冰河, 师永强. 南方丘陵地区河谷城市用地时空演变与驱动分析——以上饶市城区为例[J]. 长江流域资源与环境, 2016, 25(11): 1720-1728.
[2] 刘玮辰, 陆玉麒, 文玉钊. 长江经济带城市对外服务能力时空演变分析[J]. 长江流域资源与环境, 2016, 25(10): 1475-1483.
[3] 戴德艺, 饶映雪, 刘殿锋, 刘成武. 1989~2015年武汉市城市格局时空演变分析[J]. 长江流域资源与环境, 2016, 25(10): 1545-1554.
[4] 孙鸿鹄, 程先富, 陈翼翔, 张媛. 区域洪涝灾害恢复力时空演变研究——以巢湖流域为例[J]. 长江流域资源与环境, 2016, 25(09): 1384-1394.
[5] 吉中会, 单海燕. 长江中下游地区旱涝急转的阈值诊断及危险性评估[J]. 长江流域资源与环境, 2015, 24(10): 1793-1798.
[6] 金志丰, 陈 雯, 孙伟, 惠彦. 常熟市耕地资源时空演变特征[J]. 长江流域资源与环境, 2010, 19(03): 249-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 唐 琦,虞孝感. 长江三角洲地区经济可持续发展问题初探[J]. 长江流域资源与环境, 2006, 15(3): 269 -273 .
[3] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[4] 王海云,高太忠,高京,黄群贤. 基于AHPLP法的南水北调中线水资源优化配置[J]. 长江流域资源与环境, 2007, 16(5): 588 .
[5] 张 燕, 张 洪, 彭补拙. 土地资源、环境与经济发展的协调性评价[J]. 长江流域资源与环境, 2008, 17(4): 529 .
[6] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[7] 黄锡生,唐绍均. 三峡库区环境安全保护法律实施机制探讨[J]. 长江流域资源与环境, 2004, 13(6): 611 -615 .
[8] 张孝飞,林玉锁,俞 飞,李 波. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 14(4): 512 -515 .
[9] 廖富强,刘 影, 叶慕亚,郑 林. 鄱阳湖典型湿地生态环境脆弱性评价及压力分析[J]. 长江流域资源与环境, 2008, 17(1): 133 .
[10] 赵姚阳,濮励杰,胡晓添. BP神经网络在城市建成区面积预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(1): 14 -18 .