长江流域资源与环境 >> 2016, Vol. 25 >> Issue (09): 1384-1394.doi: 10.11870/cjlyzyyhj201609009

• 生态环境 • 上一篇    下一篇

区域洪涝灾害恢复力时空演变研究——以巢湖流域为例

孙鸿鹄1,2, 程先富1,2, 陈翼翔1,2, 张媛1,2   

  1. 1. 安徽师范大学国土资源与旅游学院, 安徽 芜湖 241003;
    2. 安徽自然灾害过程与防控研究省级实验室, 安徽 芜湖 241003
  • 收稿日期:2015-12-22 修回日期:2016-01-16 出版日期:2016-09-20
  • 通讯作者: 程先富 E-mail:xianfucheng@sina.com
  • 作者简介:孙鸿鹄(1991~),男,硕士研究生,研究方向为洪涝灾害恢复力评估.E-mail:sunhonghu2013@sina.com
  • 基金资助:
    国家自然科学基金项目(41271516);安徽高校省级学科(地理学)重大建设项目

STUDY ON THE TEMPORAL AND SPATIAL EVOLUTION OF REGIONAL FLOOD DISASTER RESILIENCE: TAKING THE CHAOHU BASIN AS A CASE

SUN Hong-hu1,2, CHENG Xian-fu1,2, CHEN Yi-xiang1,2, ZHANG Yuan1,2   

  1. 1. School of Territorial Resources and Tourism, Anhui Normal University, Wuhu 241003, China;
    2. Anhui Key Laboratory of Natural Disaster Process and Prevention, Wuhu 241003, China
  • Received:2015-12-22 Revised:2016-01-16 Online:2016-09-20
  • Supported by:
    National Natural Science Foundation of China(No. 41271516);The major construction projects of provincial subjects (Geography) in Anhui

摘要: 提高自然灾害恢复力是应对气候变化和自然灾害的重要途径之一。在总结自然灾害恢复力研究的基础上,全面考虑自然、社会、经济、技术、管理等5个维度对其的影响,构建巢湖流域洪涝灾害恢复力评价指标体系,并基于ANP分析方法求得非独立指标间的权重,评价巢湖流域洪涝灾害恢复力,进而分析2000~2010年之间巢湖流域洪涝灾害恢复力时空演变规律,以期为提高巢湖流域洪涝灾害恢复力水平提供有价值的参考。研究结果表明,2000~2010年巢湖流域大部分地区洪涝灾害恢复力指数都在增长,但增长速率存在不同地区、不同维度上的明显差异;从流域平均水平来看,10 a间巢湖流域洪涝灾害恢复力指数在增长,其中自然维的指数是下降的,其他维度的指数为增长,并且对巢湖流域洪涝灾害恢复力增长正向影响最大的是经济维影响因子,而自然维的影响因子对恢复力增长起到了负向作用;2000~2010年巢湖流域洪涝灾害各等级恢复力分布格局变化不大,但其他地区与合肥市辖区恢复力的差距在拉大。

关键词: 洪涝灾害, 恢复力, 时空演变, ANP, 巢湖流域

Abstract: Improving natural disaster resilience is one of the important methods for coping with climate change and natural disasters. On the basis of summarizing the study of natural disaster resilience, an index system for evaluating flood disaster resilience in the Chaohu Basin was constructed with a full consideration of the five dimensions (i.e., nature, society, economy, technology, and management) which have a great influence on flood disaster resilience. The weights of the dependent indexes were obtained by using analytic network process (ANP) analysis. Subsequently, the flood disaster resilience in the Chaohu Basin was evaluated. At last, the spatiotemporal evolution of flood disaster resilience in the Chaohu Basin during 2000-2010 was analyzed to provide valuable reference for improving the level of flood disaster resilience in the Chaohu Basin. The results indicated that the flood disaster resilience index in most part of the Chaohu Basin was increasing from 2000 to 2010, but there were obvious differences in the growth rate of different regions and different dimensions. From the point of view of the average level of the basin, flood disaster resilience index of the Chaohu Basin has been in growth during the 10 years, flood disaster resilience index of the natural dimension was declining while flood disaster resilience index of other dimensions were increasing, and the most positive impact on flood disaster resilience of the Chaohu Basin was the economic factor, the influencing factor of the natural dimension played a negative role in the growth of flood disaster resilience in the Chaohu Basin. The distribution patterns of various grades of the flood disaster resilience in the Chaohu Basin had little change from 2000 to 2010, but the gap of flood disaster resilience between Hefei Municipal District and other part in the Chaohu Basin became obviously.

Key words: flood disaster resilience, temporal and spatial evolution, ANP, the Chaohu Basin

中图分类号: 

  • X43
[1] FIELD C B, BARROS V R, STOCKER T F, et al. Managing the risks of extreme events and disasters to advance climate change adaptation:special report of the intergovernmental panel on climate change[M]. New York:Cambridge University Press, 2012:37-45.
[2] 中华人民共和国中央人民政府. 国家适应气候变化战略[EB/OL]. (2013-12-09)[2015-03-28]. http://www.gov.cn/gzdt/att/att/site1/20131209/001e3741a2cc140f6a8701.pdf.
[3] IPCC. Climate change 2014:impacts, adaptation, and vulnerability[M/OL]. Cambridge:Cambridge University Press, 2014. [2014-03-20]. http://www.ipcc.ch/report/ar5/wg2.
[4] Asian Development Bank. Managing Asian cities:sustainable and inclusive urban solutions[M]. Manila:Asian Development Bank, 2008:89-92.
[5] UNISDR. 5th Asian ministerial conference on disaster risk reduction[C]. Yogyakarta:UNISDR, 2012.
[6] The World Bank. World development report 2009:reshaping economic geography[M]. Washington, DC:The World Bank, 2009:73-78.
[7] MILETI D S. Disasters by design:a reassessment of natural hazards in the united states, natural hazards and disasters[M]. Washington, DC:Joseph Henry Press, 1999:45-49.
[8] WALKER B, HOLLING C S, CARPENTER S. Social-ecological resilience to coastal disasters[J]. Ecology Social, 2004, 9(2):165.
[9] 刘婧, 史培军, 葛怡, 等. 灾害恢复力研究进展综述[J]. 地球科学进展, 2006, 21(2):211-218. [LIU J, SHI P J, GE Y, et al. The review of disaster resilience research[J]. Advances in Earth Science, 2006, 21(2):211-218.]
[10] KANG B, LEE S J, KANG D H, et al. A flood risk projection for Yongdam dam against future climate change[J]. Journal of Hydro-environment Research, 2007, 1(2):118-125.
[11] CUTTER S L, BARNES L, BERRY M. et al. A Place-based model for understanding community resilience to natural disasters[J]. Global Environmental Change, 2008, 18(4):598-606.
[12] The World Bank. Climate resilient cities:A primer on reducing vulnerabilities to climate change impacts and strengthening disaster risk management in East Asian cities[M]. Washington, DC:The World Bank, 2008.
[13] MAYUNGA J S. Understanding and applying the concept of community disaster resilience:a capital-based approach[EB/OL]. (2007-08-21)[2015-03-28]. http://www.ehs.unu.edu/file/get/3761.pdf.
[14] United Nations International Strategy for Disaster Reduction (UNISDR). UNISDR terminology on disaster risk reduction (2009)[M]. Geneva:UNISDR, 2009:24.
[15] UK Department for International Development. Humanitarian emergency response review[M]. UK:UK Department for International Development, 2011.
[16] 费璇, 温家洪, 杜士强, 等. 自然灾害恢复力研究进展[J]. 自然灾害学报, 2014, 23(6):19-31. [FEI X, WEN J H, DU S Q, et al. Progress in research on natural disaster resilience[J]. Journal of Natural Disasters, 2014, 23(6):19-31.]
[17] SHAW R, IEDM Team. Climate disaster resilience:focus on coastal urban cities in Asia[M]. Kyoto:The Asian Journal of Environment and Disaster Management, 2009:4.
[18] SHAW R, FERNANDEZ G. Urban risk management in South Asia[R]. New Delhi:SAARC Disaster Management Centre (SDMC), 2010:23-34.
[19] 张灵, 陈晓宏, 千怀遂. 北江下游防洪保护区恢复力诊断[J]. 水利学报, 2011, 42(9):1129-1134. [ZHANG L, CHEN X H, QIAN H S. Diagnosis of resilience to flood hazard in lower reaches of the Beijiang River[J]. Journal of Hydraulic Engineering, 2011, 42(9):1129-1134.]
[20] PRASHAR S K, SHAW R. Urbanization and hydro-meteorological disaster resilience:the case of Delhi[J]. International Journal of Disaster Resilience in the Built Environment, 2012, 3(1):7-19.
[21] CHAN S L, WEY W M, CHANG P H. Establishing disaster resilience indicators for Tan-sui River basin in Taiwan[J]. Social Indicators Research, 2014, 115(1):387-418.
[22] CUTTER S L, BURTON C G, EMRICH C T. Disaster resilience indicators for benchmarking baseline conditions[J]. Journal of Homeland Security and Emergency Management, 2010, 7(1):1547-7355.
[23] JOERIN J, SHAW R, TAKEUCHI Y, et al. Action-oriented resilience assessment of communities in Chennai, India[J]. Environmental Hazards, 2012, 11(3):226-241.
[24] Saaty T L. The analytic network process:decision making with dependence and feedback[M]. Pittsburgh:RWS Publication, 2001:98-113.
[25] 葛怡, 史培军, 周忻, 等. 水灾恢复力评估研究:以湖南省长沙市为例[J]. 北京师范大学报(自然科学版), 2011, 47(2):197-201. [GE Y, SHI P J, ZHOU X, et al. A framework to understand and quantitatively assess social resilience to flood hazards[J]. Journal of Beijing Normal University (Natural Science), 2011, 47(2):197-201.]
[26] 孙鸿鹄, 程先富, 戴梦琴, 等. 基于DEMATEL的区域洪涝灾害恢复力影响因素及评价指标体系研究-以巢湖流域为例[J]. 长江流域资源与环境, 2015, 24(9):1577-1583. [SUN H H, CHENG X F, DAI M Q, et al. Study on the influence factors and evaluation index system of regional flood disaster resilience based on DEMATEL method-taking Chaohu Basin as a case[J]. Resources and Environment in the Yangtze Basin, 2015, 24(9):1577-1583.]
[27] 程先富, 戴梦琴, 郝丹丹. 区域洪涝灾害风险评价研究进展[J]. 安徽师范大学学报(自然科学版), 2015, 38(1):74-79. [CHENG X F, DAI M Q, HAO D D. Research progress on regional flood risk assessment[J]. Journal of Anhui Normal University (Natural Science), 2015, 38(1):74-79.]
[28] 董文涛, 程先富, 张群, 等. SCS-CN模型在巢湖流域地表产流估算中的应用[J]. 水土保持通报, 2012, 32(3):174-177, 187. [DONG W T, CHENG X F, ZHANG Q, et al. Application of SCS-CN model estimating surface runoff to Chaohu Lake Basin[J]. Bulletin of Soil and Water Conservation, 2012, 32(3):174-177, 187.]
[1] 李话语, 徐磊, 李帆, 冰河, 师永强. 南方丘陵地区河谷城市用地时空演变与驱动分析——以上饶市城区为例[J]. 长江流域资源与环境, 2016, 25(11): 1720-1728.
[2] 刘玮辰, 陆玉麒, 文玉钊. 长江经济带城市对外服务能力时空演变分析[J]. 长江流域资源与环境, 2016, 25(10): 1475-1483.
[3] 戴德艺, 饶映雪, 刘殿锋, 刘成武. 1989~2015年武汉市城市格局时空演变分析[J]. 长江流域资源与环境, 2016, 25(10): 1545-1554.
[4] 黄木易, 何翔. 巢湖流域土地景观格局变化及生态风险驱动力研究[J]. 长江流域资源与环境, 2016, 25(05): 743-750.
[5] 钱红, 严云志, 储玲, 朱仁, 高俊峰, 蔡永久. 巢湖流域河流鱼类群落的时空分布[J]. 长江流域资源与环境, 2016, 25(02): 257-264.
[6] 闪丽洁, 张利平, 陈心池, 杨卫. 长江中下游流域旱涝急转时空演变特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2100-2107.
[7] 孙鸿鹄, 程先富, 戴梦琴, 王祥, 康海迪. 基于DEMATEL的区域洪涝灾害恢复力影响因素及评价指标体系研究——以巢湖流域为例[J]. 长江流域资源与环境, 2015, 24(09): 1577-1583.
[8] 程先富, 戴梦琴, 郝丹丹, 吴庆双. 基于情景分析的区域洪涝灾害风险评价——以巢湖流域为例[J]. 长江流域资源与环境, 2015, 24(08): 1418-1424.
[9] 金志丰, 陈 雯, 孙伟, 惠彦. 常熟市耕地资源时空演变特征[J]. 长江流域资源与环境, 2010, 19(03): 249-255.
[10] 叶正伟, 朱国传. 洪泽湖流域洪涝灾害演变趋势及其与El Nio事件关系[J]. 长江流域资源与环境, 2009, 18(11): 1086-.
[11] 周洪建, 王静爱,贾慧聪,易湘生. 农业旱灾承灾体恢复力的影响因素——基于野外土地利用测量与入户调查[J]. 长江流域资源与环境, 2009, 18(1): 86-86.
[12] 周洪建, 王静爱,贾慧聪,易湘生. 农业旱灾承灾体恢复力的影响因素——基于野外土地利用测量与入户调查[J]. 长江流域资源与环境, 2009, 18(1): 86-.
[13] 吴开亚, 王玲杰. 巢湖流域大气污染的经济损失分析[J]. 长江流域资源与环境, 2007, 16(6): 781-781.
[14] 刘 慧. 长江中游地区洪涝灾害的土地利用思考[J]. 长江流域资源与环境, 2004, 13(6): 616-620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[4] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[5] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[6] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[7] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[8] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .
[9] 陈 静, 杨 凯, 张 勇, 赵 军. 灰色协调度模型在产业用水系统分析中的应用[J]. 长江流域资源与环境, 2008, 17(5): 688 .
[10] 张 燕,邓西海,高 翔,窦贻俭,彭补拙. 用参评因子动态排序法评价环境综合质量[J]. 长江流域资源与环境, 2006, 15(1): 120 -124 .