长江流域资源与环境 >> 2016, Vol. 25 >> Issue (05): 733-742.doi: 10.11870/cjlyzyyhj201605006

• 自然资源 • 上一篇    下一篇

太湖辐射和能量收支的时间变化特征

黄锐1, 赵佳玉1, 肖薇1,2, 刘寿东1,2, 李汉超1, 徐敬争1, 胡诚1, 肖启涛1   

  1. 1. 南京信息工程大学大气环境中心, 江苏 南京 210044;
    2. 南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏 南京 210044
  • 收稿日期:2015-11-17 修回日期:2016-03-02 出版日期:2016-05-20
  • 作者简介:黄锐(1963~),男,副教授,主要从事应用气象学研究.E-mail:hr@nuist.edu.cn
  • 基金资助:
    国家自然科学基金项目(41475141、41505005和41575147);教育部长江学者和创新团队发展计划;江苏省优势学科

TEMPROAL VARIABILITY OF RADIATION AND ENERGY BUDGETS OVER LAKE TAIHU

HUANG Rui1, ZHAO Jia-yu1, XIAO Wei1,2, LIU Shou-dong1,2, LI Han-chao1, XU Jing-zheng1, HU Cheng1, XIAO Qi-tao1   

  1. 1. Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2015-11-17 Revised:2016-03-02 Online:2016-05-20
  • Supported by:
    National Natural Science Foundation of China (41475141, 41505005 and41575147);Program for Changjiang Scholars and Innovative Research Team in University;Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要: 湖泊的辐射和能量收支的观测研究对于气象学和水文学研究都具有重要的意义。于2012年采用涡度相关系统和小气候观测系统观测太湖表面的辐射平衡、湖泊与大气之间的感热和潜热通量、水温廓线和常规气象要素数据,分析太湖表面辐射及能量收支的时间变化特征以及环境控制因子。结果表明:(1)太湖2012年辐射收支四分量(向下短波辐射、向上短波辐射、向下长波辐射和向上长波辐射)的年均值分别为146.5、9.4、359.7和405.4 W/m2,反照率的年均值为0.06,各辐射分量日变化和季节变化特征明显; (2)净辐射和热储量日变化趋势相同,正午最高,午夜最低;湍流能量通量的日变化幅度较小;不同天气条件下能量分配具有一定差别:晴天条件下能量分配以潜热通量为主,阴天净辐射能量主要被水体吸收转换为热储量; (3)通过分析湍流能量通量与环境因子的相关性发现:感热通量变化最主要的相关因子是风速与湖-气界面温度差的乘积;风速与湖-气界面水汽压的乘积是潜热通量的主要驱动因子。本研究结果能为边界层气象学、全球能量和物质循环以及湖泊生态环境治理等研究提供理论基础和数据支持。

关键词: 太湖, 涡度相关, 辐射收支, 感热能量, 潜热通量

Abstract: Observation on radiation and energy budget over lakes are important for meteorological and hydrological studies. Based on the eddy covariance and micrometeorological system, the radiation budget over lake surface, sensible and latent heat flux between lake and atmospheric interface, water temperature and meteorological variables were observed in 2012. Temporal variability of radiation and energy budgets and the environmental controlling factors were analyzed. The results indicated that:(1) Annual mean of the four components of radiation balance in Lake Taihu in 2012 (i.e., downward and upward shortwave radiation, downward and upward longwave radiation) were 146.5 W m-2, 9.4 W m-2, 359.7 W m-2 and 405.4 W m-2, respectively. Annual mean albedo was 0.06. There were obvious diurnal and seasonal variations for each radiation budget. (2)The diurnal pattern of water heat storage was similar to that of net radiation with maximum and minimum values at noon and midnight, respectively. With comparison to net radiation and water heat storage, the diurnal variation amplitude of turbulent energy flux was smaller. The energy distribution is different between sunny and cloudy days:latent heat flux dominates an sunny days, while water heat storage dominate on cloudy days. (3) Correlation analysis between turbulence energy flux and environmental variables indicated that sensible heat flux was mainly controlled by the product of the wind speed and temperature difference at the interface between lake and air; and the product of wind speed and water vapor pressure at their interface was the main driving factor for latent heat flux. This study can provide scientific reference to understanding the mechanism of lake-atmospheric interaction and to identify the contribution of lake in global energy budgets.

Key words: Lake Taihu, Eddy Covariance, Radiation budgets, Sensible Heat Flux, Latent Heat Flux

中图分类号: 

  • P461.5
[1] ADRIAN R, O'REILLY C M, ZAGARESE H, et al. Lakes as sentinels of climate change[J]. Limnology and Oceanography, 2009, 54(6):2283-2297.
[2] BATTIN T J, S LUYSSAERT, L A, KAPLAN, et al. The boundless carbon cycle[J]. Nature Geoscience, 2009, 2(9):598-600.
[3] CHRISTEN A, VOGT R. Energy and radiation balance of a central European city[J]. International Journal of Climatology, 2004, 24(11):1395-1421.
[4] 孙仕强, 刘寿东, 王咏薇, 等. 城、郊能量及辐射平衡特征观测分析[J]. 长江流域资源与环境, 2013,22(4):445-454. [SUN S Q, LIU S D, WANG Y W, et al. Characteristics analysis of radiation and energy budget over urban and suburban[J]. Resources and environment in the Yangtze Basin, 2013, 22(4):445-454.]
[5] 金莉莉, 何清, 买买提艾力·买买提依明, 等. 塔克拉玛干沙漠腹地辐射平衡和反照率变化特征[J].中国沙漠,2014,34(1):215-224. [JIN L L, HE Q, MAMTIMIN A, et al. Characteristics of the land surface radiation on balance and land surface albedo in the Taklimakan desert hinterland[J]. Journal of Desert Research, 2014, 34(1):215-224.]
[6] VENÄLÄINEN A, FRECH M, HEIKINHEIMO M, et al. Comparison of latent and sensible heat fluxes over boreal lakes with concurrent fluxes over a forest:Implications for regional averaging[J]. Agricultural and Forest Meteorology, 1999, 98-99:535-546.
[7] BALDOCCHI D D, HINCKS B B, MEYERS T P. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods[J]. Ecology, 1988, 69(5):1331-1340.
[8] SCHUBERT C J, DIEM T, EUGSTER W. Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels, and boundary model calculations:A comparison[J]. Environmental Science & Technology, 2012, 46(8):4515-4522.
[9] VESALA T, HUOTARI J, RANNIK Ü, et al. Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D11):1927-1936.
[10] 沈艳, 刘允芬, 王堰. 应用涡动相关法计算水热、CO2通量的国内外进展概况[J]. 南京气象学院学报, 2005,28(4):559-566. [SHEN Y, LIU Y F, WANG Y. Advances in applying the eddy-covariance technique to calculate heat, moisture and CO2 flux[J]. Journal of Nanjing Institute of Meteorology, 2005, 28(4):559-566.]
[11] NORDBO A, LAUNIAINEN S, MAMMARELLA I, et al. Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D2):D02119.
[12] ROUSE W R, BLANKEN P D, BUSSIÈRES N, et al. An investigation of the thermal and energy balance regimes of Great Slave and Great Bear Lakes[J]. Journal of Hydrometeorology, 2008, 9(6):1318-1333.
[13] DENG B, LIU S D, XIAO W, et al. Evaluation of the CLM4 lake model at a large and shallow freshwater lake[J]. Journal of Hydrometeorology, 2013, 14(2):636-649.
[14] BAI X Z, WANG J. Atmospheric teleconnection patterns associated with severe and mild ice cover on the Great Lakes, 1963-2011[J]. Water Quality Research Journal of Canada, 2012, 47(3/4):421-435.
[15] ZHANG Q Y, LIU H P. Interannual variability in the surface energy budget and evaporation over a large southern inland water in the United States[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(10):4290-4302.
[16] LEE X, LIU S D, XIAO W, et al. The Taihu eddy flux network:An observational program on energy, water, and greenhouse gas fluxes of a large freshwater lake[J]. Bulletin of the American Meteorological Society, 2014, 95(10):1583-1594.
[17] 肖薇, 刘寿东, 李旭辉,等. 大型浅水湖泊与大气之间的动量和水热交换系数——以太湖为例[J]. 湖泊科学, 2012,24(6):932-942. [XIAO W, LIU S D, LEE X, et al. Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large shallow freshwater lake:A case study of Lake Taihu[J]. Journal of Lake Sciences, 2012, 24(6):932-942.]
[18] 朴美花, 刘寿冬, 王咏薇, 等. 夏季太湖表面辐射和能量通量特征观测分析[J]. 科学技术与工程, 2014,14(19):1-7. [PIAO M H, LIU S D, WANG Y W, et al. Observed analysis of radiation and energy fluxes characteristics across Lake Taihu Surface in Summer[J]. Science Technology and Engineering, 2014, 14(19):1-7.]
[19] 王伟. 太湖能量收支及其对气候变化的响应[D]. 南京:南京信息工程大学博士学位论文, 2014. [WANG W. Energy budget at Lake Taihu and its response to climate change[D]. Nanjing:Doctoral Dissertation of Nanjing University of Information Science & Technology, 2014.]
[20] GARRATT J R. The atmospheric boundary layer[M]. New York, USA:Cambridge University Press, 1994:316.
[21] AUBINET M, GRELLE A, IBROM A, et al. Estimates of the annual net carbon and water exchange of forests:The EUROFLUX methodology[J]. Advances in Ecological Research, 1999, 30:113-175.
[22] LEE X, FINNIGAN J J, PAW U K T. Coordinate systems and flux bias error[M]//LEE X, MASSMAN W, LAW B. Handbook of Micrometeorology:A Guide for Surface Flux Measurement and Analysis. Boston, USA:Kluwer Academic Publishers, 2004:33-66.
[23] LEE X, MASSMAN W J. A perspective on thirty years of the Webb, Pearman and Leuning density corrections[J]. Boundary-Layer Meteorology, 2011, 139(1):37-59.
[24] WEBB E K, PEARMAN G I, LEUNING R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(447):85-100.
[25] XIAO W, LIU S D, WANG W, et al. Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large freshwater lake[J]. Boundary-Layer Meteorology, 2013, 148(3):479-494.
[26] BLANKEN P D, ROUSE W R, CULF A D, et al. Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada[J]. Water Resources Research, 2000, 36(4):1069-1077.
[27] ROUSE W R, OSWALD C J, BINYAMIN J, et al. The role of northern lakes in a regional energy balance[J]. Journal of Hydrometeorology, 2005, 6(3):291-305.
[28] LIU W T, KATSAROS K B, BUSINGER J A. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface[J]. Journal of the Atmospheric Sciences, 1979, 36(9):1722-1735.
[29] LIU H P, ZHANG Y, LIU S H, et al. Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D4):D04110.
[1] 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914.
[2] 许玲燕, 杜建国, 刘高峰. 基于云模型的太湖流域农村水环境承载力动态变化特征分析——以太湖流域镇江区域为例[J]. 长江流域资源与环境, 2017, 26(03): 445-453.
[3] 陈江龙, 田柳, 赵酉辰. 基于ILBM的太湖饮用水源地管理研究——以苏州市为例[J]. 长江流域资源与环境, 2016, 25(12): 1815-1823.
[4] 吕文, 杨桂山, 万荣荣. 太湖流域近25年土地利用变化对生态耗水时空格局的影响[J]. 长江流域资源与环境, 2016, 25(03): 445-452.
[5] 焦雯珺, 闵庆文, 李文华, Anthony M. Fuller. 基于ESEF的水生态承载力评估——以太湖流域湖州市为例[J]. 长江流域资源与环境, 2016, 25(01): 147-155.
[6] 龚志军, 李艳, 张敏, 蔡永久, 薛庆举, 许浩. 大型浅水湖泊太湖霍甫水丝蚓次级生产力的研究[J]. 长江流域资源与环境, 2015, 24(12): 2054-2060.
[7] 胡开明, 范恩卓. 西太湖区域水环境容量分配及水质可控目标研究[J]. 长江流域资源与环境, 2015, 24(08): 1373-1380.
[8] 尹义星, 许有鹏, 陈莹. 太湖最高水位及其与气候变化、人类活动的关系[J]. 长江流域资源与环境, 2009, 18(7): 609-.
[9] 朱广伟. 太湖水质的时空分异特征及其与水华的关系[J]. 长江流域资源与环境, 2009, 18(5): 439-.
[10] 黄俊雄; 徐宗学. 太湖流域1954~2006年气候变化及其演变趋势[J]. 长江流域资源与环境, 2009, 18(1): 33-.
[11] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546-546.
[12] 王 芳. 太湖主体湖区对梅梁湾藻类影响定量化研究[J]. 长江流域资源与环境, 2008, 17(2): 275-275.
[13] 荚德安,陈金林,王世红,赵冬青. 太湖流域农田生态系统管理与非点源污染控制[J]. 长江流域资源与环境, 2007, 16(4): 489-489.
[14] 刘云霞,|陈 爽|彭立华,,范成新. 基于格网的太湖生态环境质量空间评价[J]. 长江流域资源与环境, 2007, 16(4): 494-494.
[15] 高永霞, 朱广伟,逄 勇. 消浪工程对太湖底泥再悬浮及营养盐释放的影响[J]. 长江流域资源与环境, 2007, 16(3): 357-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐宪立,张科利,孔亚平,陈济丁. 重庆市骨架公路网规划生态环境影响评价[J]. 长江流域资源与环境, 2006, 15(1): 107 -111 .
[2] 聂 坚, 白永平, 孙 克, 王世金. “红三角”地区城镇体系结构分形研究[J]. 长江流域资源与环境, 2008, 17(5): 673 .
[3] 张美玲,梁 虹,祝 安. 贵州省水资源承载力的空间地域差异[J]. 长江流域资源与环境, 2008, 17(1): 68 .
[4] 吕东亮. 汉江水质优于长江的原因刍议[J]. 长江流域资源与环境, 2006, 15(Sup1): 102 -104 .
[5] 董方勇, 胡传林, 黄道明. 三峡水库水质保护与渔业利用关系探讨[J]. 长江流域资源与环境, 2006, 15(1): 93 -96 .
[6] 彭刚华,黄良英. 长江水质评价和预测模型探讨[J]. 长江流域资源与环境, 2006, 15(Sup1): 77 -82 .
[7] 毕东苏, 郑广宏, 顾国维, 郭小品. 城市生态系统承载理论探索与实证——以长江三角洲为例[J]. 长江流域资源与环境, 2005, 14(4): 465 -469 .
[8] 张 雷,吴映梅. 长江干流地区区域发展与国家工业化[J]. 长江流域资源与环境, 2005, 14(5): 633 -637 .
[9] 魏 伟,周 婕,许 峰. 大城市边缘区土地利用时空格局模拟——以武汉市洪山区为例[J]. 长江流域资源与环境, 2006, 15(2): 174 -179 .
[10] 王琳莉,陈 星. 一种新的汛期降水集中期划分方法[J]. 长江流域资源与环境, 2006, 15(3): 352 -355 .