长江流域资源与环境 >> 2015, Vol. 24 >> Issue (08): 1373-1380.doi: 10.11870/cjlyzyyhj201508016

• 生态环境 • 上一篇    下一篇

西太湖区域水环境容量分配及水质可控目标研究

胡开明1,2, 范恩卓3   

  1. 1. 江苏省环境科学研究院, 江苏 南京 210036;
    2. 江苏省环境工程重点实验室, 江苏 南京 210036;
    3. 河海大学环境学院, 江苏 南京 210098
  • 收稿日期:2014-10-11 修回日期:2015-02-27 出版日期:2015-08-20
  • 作者简介:胡开明(1985~),男,工程师,博士,主要从事水环境数值模拟与水污染控制方面研究.E-mail:rickiviva@163.com
  • 基金资助:
    国家水体污染控制与治理科技重大专项项目(2012ZX07506-001-001)

STUDY ON ALLOCATION OF WATER ENVIRONMENTAL CAPACITIES AND WATER QUALITY CONTROLLABLE TARGET IN WESTERN TAIHU BASIN

HU Kai-ming1,2, FAN En-zhuo3   

  1. 1. Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China;
    2. Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China;
    3. College of Environment, Hohai University, Nanjing 210098, China
  • Received:2014-10-11 Revised:2015-02-27 Online:2015-08-20

摘要: 西太湖流域产业、人口集聚,水环境污染一直以来是该区域经济可持续发展的制约因素之一,利用2010年的监测数据对西太湖主要入湖河流及湖体的水环境状况进行了分析,通过对研究区域工业点源、城镇和农村生活源、农田面源和畜禽水产污染源排污的分布情况调查,并计算了入河污染物量;利用构建的西太湖区域水量水质数学模型,估算了区域水环境容量,依据水环境功能区的水质目标与水域面积分配到了各市/区,在充分调查现有与规划的各类型污染源总量控制工程措施的基础上,量化出具有空间分布的流域污染削减率,并提出水质可控目标。结果表明:太湖湖体受总氮污染影响总体水质劣于Ⅴ类,研究区域主要入湖河流基本处于Ⅳ类,氨氮超标最严重;进入水体的COD为25 410.2 t/a,氨氮2 795.4 t/a,总氮4 646.4 t/a,总磷313.8 t/a,其中城镇生活源污染物入河量所占的比例最大,各类污染物均在35%~50%,尤以宜兴市和常州武进区负荷较大;各控制单元进入水体的污染物量基本都超过了水环境容量,近期各市/区COD、氨氮、总氮和总磷的削减率分别为8.0%~56.0%,8.0%~62.1%,6.0%~41.8%,8.0%~59.9%,远期污染物削减率更高;最终通过模型推算,定出西太湖湖体各污染因子的可控目标,2015年,COD、氨氮、总氮和总磷分别为4.50、0.80、3.50和0.08 mg/L,2020年进一步达到4.50、0.60、3.00和0.07 mg/L,为西太湖总量控制提供科学依据。

关键词: 西太湖, 环境容量, 分配, 水质可控目标, 水量水质模型

Abstract: Water pollution is a serious problem in the Taihu Basin. The key problems for water environment improvement in the future are as follows: (1) the total amount of pollutants into the lake remarkably exceeds the water environmental capacity of the lake, (2) there remains a high Cyanobacteria biomass in the lake, and (3) the industrial structure transition and upgrading along the lake are very slow-moving. As industry and population increase rapidly, the pollution of water environment has been a main factor influencing the sustainability of economic development in the Western Taihu Basin. Water environmental problems of main inflowing rivers were analyzed according to the monitoring data of 2010. Through the investigation on the distribution of the industry pollution source, urban and rural sewage source, agricultural and breeding pollution source in studied region, total amount of pollutant drainage into the rivers was calculated. After 2007, the State Council ratified Master Plan of Integrated Regulation of Water Environment of Taihu Basin and Water Function Zoning of Taihu Basin, embarking the comprehensive treatment of water environment in the basin. In this context, water quantity and quality model have been established to predict regional water environmental capacities. Based on the water function and water areas, the water environmental capacities were assigned to every county or district. After the implementation of the existing and planned engineering measures, a spatial and temporal reduction rates for pollution load and a controllable target were proposed. The results indicate that the water quality in the Taihu Lake was worse than Grade V, aand was mainly influenced by TN, and the index could only reach Grade IV in rivers and influenced mainly by NH3-N. The western Taihu Basin has a total pollution load of 25 410.2t/a COD, 2 795.4 t/a NH3-N, 4 646.4 t/a TN, and 313.8 t/a TP. The urban sewage source has the largest pollution load contribution with the proportion of 35%~50%. The pollution load in Yixing and Wujin were bigger than the other two. Forecasted pollution discharge into river for most of the water exceeds the water environment capacity. Recently, reduction rate of COD, NH3-N, TN and TP are 8.0%~56.0%, 8.0%~62.1%, 6.0%~41.8%, 8.0%~59.9%, respectively, and are expected to be higher in future. Using the simulation result of the model, an average COD, NH3-N, TN and TP value of 4.50, 0.80, 3.50 and 0.08 mg/L are proposed as the water quality controllable target for 2015 in the western Taihu Lake, furthermore, the value achieves to 4.50, 0.60, 3.00 and 0.07 mg/L in 2020. The study provides the technical support and the scientific basis to water pollution control in western Taihu Lake.

Key words: Western Taihu Basin, water environmental capacity, allocation, water quality controllable target, Water quantity and quality model

中图分类号: 

  • X524
[1] SNDERGARD M,JENSEN J P,JEPPESEN E.Retention and internal loading of phosphorus in shallow,eutrophic lakes[J].The Scientific World Journal,2001,1:427-442.
[2] FAN C X,ZHANG L,QIN B Q,et al.Estimation on dynamic release of phosphorus from wind-induced suspended particulate matter in Lake Taihu[J].Science in China Series D: Earth Sciences,2004,47(8):710-719.
[3] QIN B Q,ZHU G W,ZHANG L,et al.Estimation of internal nutrient release in large shallow Lake Taihu,China[J].Science in China Series D: Earth Sciences,2006,49(Suppl.1):38-50.
[4] PANG Y,LI Y P,LUO L C.Study on the simulation of transparency of Lake Taihu under different hydrodynamic conditions[J].Science in China Series D: Earth Sciences,2006,49(Suppl.1):162-175.
[5] JI Y,ZHANG J,YAO Q,et al.Analysis of water quality in shallow lakes with a two-dimensional flow-sediment model[J].Journal of Hydrodynamics Series B,2007,19(4):501-508.
[6] VLAG D P.A model for predicting waves and suspended silt concentration in a shallow lake[J].Hydrobiologia,1992,235/236:119-131.
[7] BLOM G,DUIN E H S,AALDERINK R H,et al.Modelling sediment transport in shallow lakes-interactions between sediment transport and sediment composition[J].Hydrobiologia,1992,235/236:153-166.
[8] 余 辉.基于太湖入湖污染物总量控制的湖泊水体分区研究[R].北京:中国环境科学研究院,2007.
[9] 罗 缙,逄 勇,罗清吉,等.太湖流域平原河网区往复流河道水环境容量研究[J].河海大学学报:自然科学版,2004,32(2):144-146.
[10] 逄 勇,姚 琪,濮培民.太湖地区大气水环境的综合数值研究[M].北京:气象出版社,1998:92-107.
[11] 孙卫红,姚国金,逄 勇.基于不均匀系数的水环境容量计算方法探讨[J].水资源保护,2001(2):25-26.
[12] 张利民,刘 洋,孙卫红,等.太湖流域漕桥河小流域水环境容量估算及污染物削减分配[J].湖泊科学,2009,21(4):502-508.
[13] 边 博,夏明芳,王志良,等.太湖流域重污染区主要水污染物总量控制[J].湖泊科学,2012,24(3):327-333.
[14] 金相灿,刘树坤,章宗涉,等.中国湖泊环境[M].北京:海洋出板社,1995.
[15] 田旭东,汪小泉.钱塘江流域污染负荷及水环境容量研究[J].环境污染与防治,2008,30(7):74-77,81.
[16] 胡开明,逄 勇,王 华.太湖湖体总氮平衡及水质可控目标[J].水科学进展,2012,23(4):555-562.
[1] 辛在军, 李秀珍, 贾悦, 郭文永, 孙永光. 模拟及河道实验浮床水芹根系生长及生物量分配对比研究[J]. 长江流域资源与环境, 2016, 25(Z1): 50-58.
[2] 秦文浩, 夏琨, 叶晓东, 纪风强. 竺山湾流域河湖系统污染物总量控制研究[J]. 长江流域资源与环境, 2016, 25(05): 822-829.
[3] 王婷, 方国华, 刘羽, 刘飞飞. 基于最严格水资源管理制度的初始水权分配研究[J]. 长江流域资源与环境, 2015, 24(11): 1870-1875.
[4] 张萌, 祝国荣, 周慜, 李惠民, 陆友伟, 刘足根. 仙女湖富营养化特征与水环境容量核算[J]. 长江流域资源与环境, 2015, 24(08): 1395-1404.
[5] 施文涛, 谢昕云, 刘西军, 张驰, 柯立, 徐小牛. 安徽大别山区杉木人工林乔木层生物量模型及碳贮量[J]. 长江流域资源与环境, 2015, 24(05): 758-764.
[6] 胡小飞, 傅春. 鄱阳湖流域排污权初始分配模式的比较研究[J]. 长江流域资源与环境, 2015, 24(05): 839-845.
[7] 袁龙义 陶玲 李伟 刘贵华. 底质营养盐对菹草生长及养分分配的影响[J]. 长江流域资源与环境, 2009, 18(3): 234-240.
[8] 孟 祺, 尹云松, 孟令杰. 流域初始水权分配研究进展[J]. 长江流域资源与环境, 2008, 17(5): 734-734.
[9] 曹 云,黄志刚,欧阳志云, 郑 华. 长江防护林——樟树林对降雨再分配的影响[J]. 长江流域资源与环境, 2007, 16(5): 603-603.
[10] 方 涛,徐小清. 应用平衡分配法建立长江水系沉积物金属相对质量基准[J]. 长江流域资源与环境, 2007, 16(4): 525-525.
[11] 陈燕飞,王祥三. 汉江流域水权初始配置模型研究[J]. 长江流域资源与环境, 2007, 16(3): 298-298.
[12] 刘丙军,邵东国,阳书敏,曹卫锋. 基于灰关联熵的汉江中下游地区水资源分配模型和方法研究[J]. 长江流域资源与环境, 2005, 14(6): 699-703.
[13] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605-610.
[14] 刘沛林, Abby Liu, Geoff Wall. 生态博物馆理念及其在少数民族社区景观保护中的作用[J]. 长江流域资源与环境, 2005, 14(2): 254-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[4] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[5] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[6] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[7] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[8] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[9] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .