长江流域资源与环境 >> 2016, Vol. 25 >> Issue (06): 974-980.doi: 10.11870/cjlyzyyhj201606014
王从锋1,2, 陈明明1, 刘德富3, 熊锋1, 刘慧杰1, 朱良康1
WANG Cong-feng1,2, CHEN Ming-ming1, LIU De-fu3, XIONG Feng1, LIU Hui-jie1, ZHU Liang-kang1
摘要: 以鲢鱼(Hypophthalmichthys molitrix)为研究对象,在自制的葛洲坝船闸模型中,研究水流诱导鱼类进入船闸的技术。诱鱼效果采用鱼平均聚集率(P)、诱集效率指数(I)、通过闸门频次(f)和上下游停留时间比(Tr)作为评价指标。研究结果表明:适当范围的水流流速对诱导鱼类进入船闸有一定的诱集作用。当闸门断面平均流速为0.45m/s时,诱集效率最高,此时鱼类在船闸两侧区域平均聚集率和诱集效率指数最大,通过闸门频次最高;当水流流速为0m/s(对照组)时,鱼类的活动规律不明显;当水流速度大于0m/s且小于0.45m/s时,鱼群聚集中心主要集中闸门内高流速区域;当流速超过0.45m/s后,逐渐增大时,鱼类进入船闸的频率呈下降趋势,鱼群聚集中心主要集中在闸门下游侧流速较稳定的区域;当流速超过0.75m/s后,鱼类的顶流行为逐渐减弱,不再呈现向闸门聚集的趋势,出现逃逸行为。通过本研究,为鱼类行为学的研究提供基础数据,同时为中低水头水利枢纽船闸与鱼道结合的可行性研究提供参考依据。
中图分类号:
[1] BEAMISH R J, NORTHCOTE T G. Extinction of a population of anadromous parasitic lamprey, Lampetra tridentata, upstream of an impassable dam[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46(3): 420-425. [2] NERAAS L P, SPRUELL P. Fragmentation of riverine systems: the genetic effects of dams on bull trout (Salvelinus confluentus) in the Clark Fork River system[J]. Molecular Ecology, 2001, 10(5): 1153-1164. [3] 陈 进, 黄 薇, 张 卉. 长江上游水电开发对流域生态环境影响初探[J]. 水利发展研究, 2006, 6(8): 10-13, 17. [CHEN J, HUANG W, ZHANG H. The influence of hydropower development in the upper reaches of the Yangtze River on the ecological environment of the river basin[J]. Water Resources Development Research, 2006, 6(8): 10-13, 17.] [4] CHEONG T S, KAVVAS M L, ANDERSON E K. Evaluation of adult white sturgeon swimming capabilities and applications to fishway design[J]. Environmental Biology of Fishes, 2006, 77(2): 197-208. [5] 刘洪波. 鱼道建设现状、问题与前景[J]. 水利科技与经济, 2009, 15(6): 477-479. [LIU H B. Current situation and questions and prospect of fishways construction[J]. Water Conservancy Science and Technology and Economy, 2009, 15(6): 477-479.] [6] 王兴勇, 郭 军. 国内外鱼道研究与建设[J]. 中国水利水电科学研究院学报, 2005, 3(3): 222-228. [WANG X Y, GUO J. Brief review on research and construction of fish-ways at home and abroad[J]. Journal of China Institute of Water Resources and Hydropower Research, 2005, 3(3): 222-228.] [7] ARGENT D G, KIMMEL W G. Influence of navigational lock and dam structures on adjacent fish communities in a major river system[J]. River Research and Applications, 2011, 27(10): 1325-1333. [8] JOHNSON R A, WICHERN D W. Applied Multivariate Statistical Analysis[M]. 5th ed. New Jersey: Prentice Hall, 2002: 5. [9] NIELSEN A C. Computational fluid dynamics applications for the Lake Washington Ship Canal[D]. Iowa: Master Dissertation of The University of Iowa, 2011. [10] 熊 锋, 王从锋, 刘德富, 等. 葛洲坝1号船闸启闭闸门对近闸区域鱼类活动规律的影响[J]. 水生态学杂志, 2014, 35(5): 8-14. [XIONG F, WANG C F, LIU D F, et al. Fish assemblages under different running status of the No. 1 ship lock of the Gezhou dam[J]. Journal of Hydroecology, 2014, 35(5): 8-14.] [11] 王从锋, 向经文, 刘德富, 等. 一种利用船闸实现过鱼的装置: 中国, 103485314A [P]. 2014-01-01. [WANG C F, XIANG J W, LIU D F, et al. A fish passage structure by ship lock: China, 103485314A[P]. 2014-01-01.] [12] 何大仁, 施养明. 鱼礁模型对黑鲷的诱集效果[J]. 厦门大学学报(自然科学版), 1995, 34(4): 653-658. [HE D R, SHI Y M. Attractive effect of fish reef model on Black porgy (Sparus macrocephalus)[J]. Journal of Xiamen University (Natural Science), 1995, 34(4): 653-658.] [13] 周艳波, 蔡文贵, 陈海刚, 等. 10种人工鱼礁模型对黑鲷幼鱼的诱集效果[J]. 水产学报, 2011, 35(5): 711-718. [ZHOU Y B, CAI W G, CHEN H G, et al. Attraction effect of various artificial reef models on Sparus macrocephalus[J]. Journal of Fisheries of China, 2011, 35(5): 711-718.] [14] PUERTAS J, PENA L, TEIJEIRO T. Experimental approach to the hydraulics of vertical slot fishways[J]. Journal of Hydraulic Engineering, 2004, 130(1): 10-23. [15] 石小涛, 陈求稳, 黄应平, 等. 鱼类通过鱼道内水流速度障碍能力的评估方法[J]. 生态学报, 2011, 31(22): 6967-6972. [SHI X T, CHEN Q W, HUANG Y P, et al. Review on the methods to quantify fish's ability to cross velocity barriers in fish passage[J]. Acta Ecologica Sinica, 2011, 31(22): 6967-6972.] [16] FARRELL A P. Comparisons of swimming performance in rainbow trout using constant acceleration and critical swimming speed tests[J]. Journal of Fish Biology, 2008, 72(3): 693-710. [17] HE P, WARDLE C S. Endurance at intermediate swimming speeds of Atlantic mackerel, Scomber scombrus L. , herring, Clupea harengus L. , and saithe, Pollachius virens L. [J]. Journal of Fish Biology, 1988, 33(2): 255-266. [18] PLAUT I. Critical swimming speed: its ecological relevance[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2001, 131(1): 41-50. [19] 郑金秀, 韩德举, 胡望斌, 等. 与鱼道设计相关的鱼类游泳行为研究[J]. 水生态学杂志, 2010, 3(5): 104-110. [ZHENG J X, HAN D J, HU W B, et al. Fish swimming performance related to fishway design[J]. Journal of Hydroecology, 2010, 3(5): 104-110.] [20] STARRS D, EBNER B C, LINTERMANS M, et al. Using sprint swimming performance to predict upstream passage of the endangered Macquarie perch in a highly regulated river[J]. Fisheries Management and Ecology, 2011, 18(5): 360-374. [21] PARAMO J, QUIÑONES R A, RAMIREZ A, et al. Relationship between abundance of small pelagic fishes and environmental factors in the Colombian Caribbean Sea: an analysis based on hydroacoustic information[J]. Aquatic Living Resources, 2003, 16(3): 239-245. [22] 刘 稳, 诸葛亦斯, 欧阳丽, 等. 水动力学条件对鱼类生长影响的试验研究[J]. 水科学进展, 2009, 20(6): 812-817. [LIU W, ZHUGE Y S, OUYANG L, et al. Experimental study of the effect of hydrodynamic conditions on fish growth[J]. Advances in Water Science, 2009, 20(6): 812-817.] [23] 何大仁, 蔡厚才. 鱼类行为学[M]. 厦门: 厦门大学出版社, 1998. [HE D R, CAI H C. Fish Ethology[M]. Xiamen: Xiamen University Press, 1998.] [24] 袁 喜, 涂志英, 韩京成, 等. 流速对鲫游泳行为和能量消耗影响的研究[J]. 水生态学杂志, 2011, 32(4): 103-109. [YUAN X, TU Z Y, HAN J C, et al. Effects of folw rate on swimming behavior and energy consumption of Carassius auratus[J]. Journal of Hydroecology, 2011, 32(4): 103-109.] [25] TUDORACHE C, VIAENE P, BLUST R, et al. A comparison of swimming capacity and energy use in seven European freshwater fish species[J]. Ecology of Freshwater Fish, 2008, 17(2): 284-291. [26] 张 硕, 陈 勇. 黑鲪幼鱼趋流性的初步研究[J]. 上海水产大学学报, 2005, 14(3): 282-287. [ZHANG S, CHEN Y. Preliminary study on the rheotaxis of juvenile sebastodes fuscescens[J]. Journal of Shanghai Fisheries University, 2005, 14(3): 282-287.] [27] 赵希坤, 韩桢锷. 鱼类克服流速能力的试验[J]. 水产学报, 1980, 4(1): 31-37. [ZHAO X K, HAN Z E. Experiments on the current overcoming ability of some freshwater fishes[J]. Journal of Fisheries of China, 1980, 4(1): 31-37.] [28] 汤荆燕, 高 策, 陈 旻, 等. 不同流态对鱼道进口诱鱼效果影响的实验研究[J]. 红水河, 2013, 32(1): 34-39, 44. [TANG J Y, GAO C, CHEN M, et al. Study on influence of different flow patterns on fish attracting effect at fish way entrance[J]. Hongshui River, 2013, 32(1): 34-39, 44.] |
[1] | 冯 畅, 毛德华, 周 慧, 曹艳敏, 胡光伟. 流域绿水管理博弈建模及应用分析[J]. 长江流域资源与环境, 2018, 27(11): 2505-2517. |
[2] | 严灿, 胡加琴, 路波, 刘国勇, 胡晓, 王继保, 石小涛. 水电背景的鱼类救护工程与投资回报:中国鱼类资源前景堪忧[J]. 长江流域资源与环境, 2016, 25(Z1): 44-49. |
[3] | 李云良, 姚静, 李梦凡, 张奇. 鄱阳湖水流运动与污染物迁移路径的粒子示踪研究[J]. 长江流域资源与环境, 2016, 25(11): 1748-1758. |
[4] | 任晓冬, 黄明杰. 赤水河流域产业状况与综合流域管理策略[J]. 长江流域资源与环境, 2009, 18(2): 97-. |
[5] | 邓祖涛;陆玉麒. 汉水流域城市空间分布的分形研究及优化举措[J]. 长江流域资源与环境, 2005, 14(6): 679-683. |
|