长江流域资源与环境 >> 2016, Vol. 25 >> Issue (06): 974-980.doi: 10.11870/cjlyzyyhj201606014

• 生态环境 • 上一篇    下一篇

基于葛洲坝1号船闸模型的水流诱鱼试验研究

王从锋1,2, 陈明明1, 刘德富3, 熊锋1, 刘慧杰1, 朱良康1   

  1. 1. 三峡大学水利与环境学院, 湖北 宜昌 443002;
    2. 三峡地区地质灾害与生态环境湖北省协同创新中心, 湖北 宜昌 443002;
    3. 湖北工业大学资源与环境学院, 湖北 武汉 430068
  • 收稿日期:2015-09-21 修回日期:2016-01-15 出版日期:2016-06-20
  • 作者简介:王从锋(1974~),男,教授,主要从事生态水工结构与生态混凝土材料方面研究.E-mail:wangcf@ctgu.edu.cn
  • 基金资助:
    水利部公益性行业科研专项经费项目;获得2015年三峡大学研究生科研创新基金资助

EXPERIMENTAL STUDY ABOUT ATTRACTIVE EFFECTS FOR FISH IN DIFFERENT FLOW VELOCITY BY THE MODEL OF THE NO.1 SHIP LOCK OF THE GEZHOU DAM

WANG Cong-feng1,2, CHEN Ming-ming1, LIU De-fu3, XIONG Feng1, LIU Hui-jie1, ZHU Liang-kang1   

  1. 1. College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China;
    2. Synergistic Innovation Center of Geological Disasters and Ecological Environment in the Three Gorges Region in Hubei Province, Yichang 443002, China;
    3. College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China
  • Received:2015-09-21 Revised:2016-01-15 Online:2016-06-20
  • Supported by:
    Special Funds for Public Industry Research Projects of the National Ministry of Water Resources (Grant No.201201030);Science and Technology Innovation Foundation for the CTGU in 2015(Grant No.2015CX014)

摘要: 以鲢鱼(Hypophthalmichthys molitrix)为研究对象,在自制的葛洲坝船闸模型中,研究水流诱导鱼类进入船闸的技术。诱鱼效果采用鱼平均聚集率(P)、诱集效率指数(I)、通过闸门频次(f)和上下游停留时间比(Tr)作为评价指标。研究结果表明:适当范围的水流流速对诱导鱼类进入船闸有一定的诱集作用。当闸门断面平均流速为0.45m/s时,诱集效率最高,此时鱼类在船闸两侧区域平均聚集率和诱集效率指数最大,通过闸门频次最高;当水流流速为0m/s(对照组)时,鱼类的活动规律不明显;当水流速度大于0m/s且小于0.45m/s时,鱼群聚集中心主要集中闸门内高流速区域;当流速超过0.45m/s后,逐渐增大时,鱼类进入船闸的频率呈下降趋势,鱼群聚集中心主要集中在闸门下游侧流速较稳定的区域;当流速超过0.75m/s后,鱼类的顶流行为逐渐减弱,不再呈现向闸门聚集的趋势,出现逃逸行为。通过本研究,为鱼类行为学的研究提供基础数据,同时为中低水头水利枢纽船闸与鱼道结合的可行性研究提供参考依据。

关键词: 船闸, 过鱼设施, 水流, 诱集效率, 鱼类行为

Abstract: This research takes the Hypophthalmichthys molitrix as the object in the study toexplore the technology for inducing fish to swim cross the ship lock in a home-made Gezhou Dam ship lock mode. All fish are with an average length of 12.5±2.4cm and height of 21.3±3.5 g. The temperature is controlled in the range of (20±1)and DO is larger than 7 mg/L. One hundred fish were randomly selected for each experiment and tested for only once. When viewed video processing data, each region took a 2 hour continuous observation with 1 min intervals for a screenshot to record the distribution of fishes. The fish average aggregation rate (P), trapping efficiency index (I), gate crossing frequency (f) and the upstream and downstream residence time ratio (Tr) were the evaluation index to evaluate the actual effect of luring fish. The results show that an appropriate range of flow velocity had a certain attraction effect to induce the fish into the lock. When the average flow velocity at the gate section was about 0.45 m/s, the average aggregate rate and trapping efficiency index on the both side of the lock reached the maximum value, the rate of fish through the gate recurrence was the highest. When the flow velocity was 0 m/s (control group), the activity routines of fish was not obvious ,only given a certain flow rate, the activity of fish was regular, that was, the phenomenon of the top flow. When the flow velocity was between 0 and 0.45m/s, barycenter of fish mainly concentrated in high velocity area of the gate. When the velocity was greater than 0.45 m/s, then gradually increased, the frequency of the fish into the lock was on the decline, barycenter of fish mainly concentrated in the downstream side of gate, in where the flow velocity was relatively stable. When the velocity reached to 0.75 m/s, the fish reached the limit rate of swimming velocity in the silver carp. To through the gate of high-speed flow area, the fish must accelerate the tail beat frequency or burst slide. Because the gate guide wall distance is long and and the fish need to consume a lot of energy to get through the gate upstream, high-speed flow of fish produce certain drive effect. Therefore, appropriate velocity on the gate region downstream of fish had a certain induction, and fish trapping efficiency between the frequency and velocity of the ship lock showed significantly correlated. When the velocity was greater than 0.75m/s, fish failed to against the stream gradually, and no longer gathered around the gate, then escaped. This paper is expected to provide basic data for the feasibility study of low-head hydro project combined with fishway, and also offer reference for the study of the fish behavior in the future.

Key words: ship lock, dam-passing buildings, flow velocity, attractiveeffects, fish behavior

中图分类号: 

  • S917.4
[1] BEAMISH R J, NORTHCOTE T G. Extinction of a population of anadromous parasitic lamprey, Lampetra tridentata, upstream of an impassable dam[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46(3): 420-425.
[2] NERAAS L P, SPRUELL P. Fragmentation of riverine systems: the genetic effects of dams on bull trout (Salvelinus confluentus) in the Clark Fork River system[J]. Molecular Ecology, 2001, 10(5): 1153-1164.
[3] 陈 进, 黄 薇, 张 卉. 长江上游水电开发对流域生态环境影响初探[J]. 水利发展研究, 2006, 6(8): 10-13, 17. [CHEN J, HUANG W, ZHANG H. The influence of hydropower development in the upper reaches of the Yangtze River on the ecological environment of the river basin[J]. Water Resources Development Research, 2006, 6(8): 10-13, 17.]
[4] CHEONG T S, KAVVAS M L, ANDERSON E K. Evaluation of adult white sturgeon swimming capabilities and applications to fishway design[J]. Environmental Biology of Fishes, 2006, 77(2): 197-208.
[5] 刘洪波. 鱼道建设现状、问题与前景[J]. 水利科技与经济, 2009, 15(6): 477-479. [LIU H B. Current situation and questions and prospect of fishways construction[J]. Water Conservancy Science and Technology and Economy, 2009, 15(6): 477-479.]
[6] 王兴勇, 郭 军. 国内外鱼道研究与建设[J]. 中国水利水电科学研究院学报, 2005, 3(3): 222-228. [WANG X Y, GUO J. Brief review on research and construction of fish-ways at home and abroad[J]. Journal of China Institute of Water Resources and Hydropower Research, 2005, 3(3): 222-228.]
[7] ARGENT D G, KIMMEL W G. Influence of navigational lock and dam structures on adjacent fish communities in a major river system[J]. River Research and Applications, 2011, 27(10): 1325-1333.
[8] JOHNSON R A, WICHERN D W. Applied Multivariate Statistical Analysis[M]. 5th ed. New Jersey: Prentice Hall, 2002: 5.
[9] NIELSEN A C. Computational fluid dynamics applications for the Lake Washington Ship Canal[D]. Iowa: Master Dissertation of The University of Iowa, 2011.
[10] 熊 锋, 王从锋, 刘德富, 等. 葛洲坝1号船闸启闭闸门对近闸区域鱼类活动规律的影响[J]. 水生态学杂志, 2014, 35(5): 8-14. [XIONG F, WANG C F, LIU D F, et al. Fish assemblages under different running status of the No. 1 ship lock of the Gezhou dam[J]. Journal of Hydroecology, 2014, 35(5): 8-14.]
[11] 王从锋, 向经文, 刘德富, 等. 一种利用船闸实现过鱼的装置: 中国, 103485314A [P]. 2014-01-01. [WANG C F, XIANG J W, LIU D F, et al. A fish passage structure by ship lock: China, 103485314A[P]. 2014-01-01.]
[12] 何大仁, 施养明. 鱼礁模型对黑鲷的诱集效果[J]. 厦门大学学报(自然科学版), 1995, 34(4): 653-658. [HE D R, SHI Y M. Attractive effect of fish reef model on Black porgy (Sparus macrocephalus)[J]. Journal of Xiamen University (Natural Science), 1995, 34(4): 653-658.]
[13] 周艳波, 蔡文贵, 陈海刚, 等. 10种人工鱼礁模型对黑鲷幼鱼的诱集效果[J]. 水产学报, 2011, 35(5): 711-718. [ZHOU Y B, CAI W G, CHEN H G, et al. Attraction effect of various artificial reef models on Sparus macrocephalus[J]. Journal of Fisheries of China, 2011, 35(5): 711-718.]
[14] PUERTAS J, PENA L, TEIJEIRO T. Experimental approach to the hydraulics of vertical slot fishways[J]. Journal of Hydraulic Engineering, 2004, 130(1): 10-23.
[15] 石小涛, 陈求稳, 黄应平, 等. 鱼类通过鱼道内水流速度障碍能力的评估方法[J]. 生态学报, 2011, 31(22): 6967-6972. [SHI X T, CHEN Q W, HUANG Y P, et al. Review on the methods to quantify fish's ability to cross velocity barriers in fish passage[J]. Acta Ecologica Sinica, 2011, 31(22): 6967-6972.]
[16] FARRELL A P. Comparisons of swimming performance in rainbow trout using constant acceleration and critical swimming speed tests[J]. Journal of Fish Biology, 2008, 72(3): 693-710.
[17] HE P, WARDLE C S. Endurance at intermediate swimming speeds of Atlantic mackerel, Scomber scombrus L. , herring, Clupea harengus L. , and saithe, Pollachius virens L. [J]. Journal of Fish Biology, 1988, 33(2): 255-266.
[18] PLAUT I. Critical swimming speed: its ecological relevance[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2001, 131(1): 41-50.
[19] 郑金秀, 韩德举, 胡望斌, 等. 与鱼道设计相关的鱼类游泳行为研究[J]. 水生态学杂志, 2010, 3(5): 104-110. [ZHENG J X, HAN D J, HU W B, et al. Fish swimming performance related to fishway design[J]. Journal of Hydroecology, 2010, 3(5): 104-110.]
[20] STARRS D, EBNER B C, LINTERMANS M, et al. Using sprint swimming performance to predict upstream passage of the endangered Macquarie perch in a highly regulated river[J]. Fisheries Management and Ecology, 2011, 18(5): 360-374.
[21] PARAMO J, QUIÑONES R A, RAMIREZ A, et al. Relationship between abundance of small pelagic fishes and environmental factors in the Colombian Caribbean Sea: an analysis based on hydroacoustic information[J]. Aquatic Living Resources, 2003, 16(3): 239-245.
[22] 刘 稳, 诸葛亦斯, 欧阳丽, 等. 水动力学条件对鱼类生长影响的试验研究[J]. 水科学进展, 2009, 20(6): 812-817. [LIU W, ZHUGE Y S, OUYANG L, et al. Experimental study of the effect of hydrodynamic conditions on fish growth[J]. Advances in Water Science, 2009, 20(6): 812-817.]
[23] 何大仁, 蔡厚才. 鱼类行为学[M]. 厦门: 厦门大学出版社, 1998. [HE D R, CAI H C. Fish Ethology[M]. Xiamen: Xiamen University Press, 1998.]
[24] 袁 喜, 涂志英, 韩京成, 等. 流速对鲫游泳行为和能量消耗影响的研究[J]. 水生态学杂志, 2011, 32(4): 103-109. [YUAN X, TU Z Y, HAN J C, et al. Effects of folw rate on swimming behavior and energy consumption of Carassius auratus[J]. Journal of Hydroecology, 2011, 32(4): 103-109.]
[25] TUDORACHE C, VIAENE P, BLUST R, et al. A comparison of swimming capacity and energy use in seven European freshwater fish species[J]. Ecology of Freshwater Fish, 2008, 17(2): 284-291.
[26] 张 硕, 陈 勇. 黑鲪幼鱼趋流性的初步研究[J]. 上海水产大学学报, 2005, 14(3): 282-287. [ZHANG S, CHEN Y. Preliminary study on the rheotaxis of juvenile sebastodes fuscescens[J]. Journal of Shanghai Fisheries University, 2005, 14(3): 282-287.]
[27] 赵希坤, 韩桢锷. 鱼类克服流速能力的试验[J]. 水产学报, 1980, 4(1): 31-37. [ZHAO X K, HAN Z E. Experiments on the current overcoming ability of some freshwater fishes[J]. Journal of Fisheries of China, 1980, 4(1): 31-37.]
[28] 汤荆燕, 高 策, 陈 旻, 等. 不同流态对鱼道进口诱鱼效果影响的实验研究[J]. 红水河, 2013, 32(1): 34-39, 44. [TANG J Y, GAO C, CHEN M, et al. Study on influence of different flow patterns on fish attracting effect at fish way entrance[J]. Hongshui River, 2013, 32(1): 34-39, 44.]
[1] 冯 畅, 毛德华, 周 慧, 曹艳敏, 胡光伟. 流域绿水管理博弈建模及应用分析[J]. 长江流域资源与环境, 2018, 27(11): 2505-2517.
[2] 严灿, 胡加琴, 路波, 刘国勇, 胡晓, 王继保, 石小涛. 水电背景的鱼类救护工程与投资回报:中国鱼类资源前景堪忧[J]. 长江流域资源与环境, 2016, 25(Z1): 44-49.
[3] 李云良, 姚静, 李梦凡, 张奇. 鄱阳湖水流运动与污染物迁移路径的粒子示踪研究[J]. 长江流域资源与环境, 2016, 25(11): 1748-1758.
[4] 任晓冬, 黄明杰. 赤水河流域产业状况与综合流域管理策略[J]. 长江流域资源与环境, 2009, 18(2): 97-.
[5] 邓祖涛;陆玉麒. 汉水流域城市空间分布的分形研究及优化举措[J]. 长江流域资源与环境, 2005, 14(6): 679-683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 唐 琦,虞孝感. 长江三角洲地区经济可持续发展问题初探[J]. 长江流域资源与环境, 2006, 15(3): 269 -273 .
[3] 王海云,高太忠,高京,黄群贤. 基于AHPLP法的南水北调中线水资源优化配置[J]. 长江流域资源与环境, 2007, 16(5): 588 .
[4] 张 燕, 张 洪, 彭补拙. 土地资源、环境与经济发展的协调性评价[J]. 长江流域资源与环境, 2008, 17(4): 529 .
[5] 黄锡生,唐绍均. 三峡库区环境安全保护法律实施机制探讨[J]. 长江流域资源与环境, 2004, 13(6): 611 -615 .
[6] 张孝飞,林玉锁,俞 飞,李 波. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 14(4): 512 -515 .
[7] 廖富强,刘 影, 叶慕亚,郑 林. 鄱阳湖典型湿地生态环境脆弱性评价及压力分析[J]. 长江流域资源与环境, 2008, 17(1): 133 .
[8] 赵姚阳,濮励杰,胡晓添. BP神经网络在城市建成区面积预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(1): 14 -18 .
[9] 许健民, 吕开宇, 娄博杰. 农业生产对土壤盐渍化影响的经济分析[J]. 长江流域资源与环境, 2009, 18(2): 132 .
[10] 刘 俊 陆玉麒. 经济快速发展地区土地利用结构的时空演变——以苏锡常地区为例[J]. 长江流域资源与环境, 2009, 18(4): 307 .