长江流域资源与环境 >> 2018, Vol. 27 >> Issue (11): 2505-2517.doi: 10.11870/cjlyzyyhj201811012

• 自然资源 • 上一篇    下一篇

流域绿水管理博弈建模及应用分析

冯  畅1,2,毛德华1*,周  慧3,曹艳敏1,胡光伟4   

  1. (1. 湖南师范大学资源与环境科学学院,湖南 长沙 410081;2.衡阳师范学院城市与旅游学院,湖南 衡阳 421002;
    3. 湖南省水文水资源勘测局,湖南 长沙410007;4. 湖南工业大学城市与环境学院,湖南 株洲 412007
  • 出版日期:2018-11-20 发布日期:2018-12-14

Game Modeling and Application Analysis of Green Water Management in the River Basin

FENG Chang1,2, MAO De-hua1, ZHOU Hui3, CAO Yan-min1, HU Guang-wei4   

  1. (1. College of Resources and Environment Science, Hunan Normal University, Changsha 410081, China; 2.College of City and
     Tourism,Hengyang Normal University,Hengyang 421002,China; 3. Hydrology and Water Resources Survey Bureau of 
    Hunan Province, Changsha 410007, China; 4. College of Urban and Environment Scienle, Hunan University
     of Technology, Zhuzhou 412007, China
  • Online:2018-11-20 Published:2018-12-14

摘要: 绿水资源表示水循环通过降水渗透入土壤非饱和层并由植物蒸腾或土壤蒸发返回大气层的水汽,是农业作物生产的重要基础,但是通常被传统流域水资源管理所忽视。基于流域水量平衡和蓝水绿水综合思维,将绿水资源纳入流域水资源管理体系。在绿水信贷理念和博弈建模分析框架下,结合SWAT分布式水文模型、多目标优化及情景比较分析,利用绿水管理措施合理优化配置流域蓝水绿水资源,采用绿水生态补偿协调处理上下游利益冲突的博弈问题,探索性地提出了流域绿水管理博弈框架。该框架通过博弈建模可以识别分析流域绿水管理问题的博弈空间、博弈结构和纳什均衡等博弈特征;通过合作博弈约束条件改进的多目标优化,可以计算流域绿水管理情景的绿水补偿标准和帕累托最优收益。将建立的绿水管理博弈框架应用于涟水流域实例研究,NSE、R2、PBIAS、p-factor与r-factor等模拟效果评价和不确定性分析结果表明,涟水流域SWAT分布式水文模型的蓝水绿水模拟均达到可信程度。上下游收益变化、绿水补偿标准与帕累托最优解集等博弈分析结果显示,涟水流域整体社会经济与生态环境收益明显改善,其帕累托最优收益平均增长2.72亿元/a,年均绿水补偿标准折合1.94、1 253.7元/hm2。实例分析表明提出的绿水管理博弈框架在涟水流域具有较好的适用性和可行性。因此,该方法可以为流域蓝水绿水管理试点研究及其绿水补偿标准核定提供相关理论依据和技术参考,具有一定程度的的应用价值和现实意义。

关键词: 蓝水, 绿水, SWAT, 博弈论, 绿水信贷, 生态补偿, 涟水流域

Abstract: Green water resources indicate that the precipitation infiltrates into the soil unsaturated layer and returns to atmosphere by the plant transpiration and soil evaporation through hydrologic cycle, which is an important basis for the production of agricultural crops, however, it is usually ignored by traditional water resources management in the river basin. Based on the basin-wide water balance and concept of blue and green water,this paper proposes a method of taking green water resources into the basin water resources management. In the framework of the green water credit concept and game theory analysis, SWAT distributed hydrological model in combination with the multi-objective optimization and scenario comparison analysis, optimizes the allocation of watershed blue and green resources and coordinate interest conflicts between upstream and downstream through green water management and green water compensation. Accordingly, the game theory framework of basin green water management is exploratory proposed. This method can identify and analyze game space, game structure and Nash equilibrium of basin green water management by game modeling and can calculate green water compensation standards and Pareto optimal in different green water management scenarios by the improved optimization method and its cooperative game theory constraint conditions. Moreover, the game theory framework of green water management has been applied to the Lianshui river basin, and the simulation and uncertainty analysis results of NSE, R2, PBIAS, p-factor as well as r-factor indicated good performance of blue and green water simulation for the constructed SWAT distributed hydrology model in the Lianshui river basin. The game analysis results of revenue change between upstream and downstream, green water compensation standard and Pareto optimal solution set show that the overall socio-economic and ecological benefits of the Lianshui basin improved significantly. Its Pareto-optimal income increased by an average of 272 million yuan/a, and the average annual green water compensation standard was 1.94 yuan/m3 and 1 253.7 yuan/hm2, which proved good applicability and feasibility of the proposed game theory framework of green water management in the Lianshui river basin. Consequently, this method can provide relevant theoretical basis and technical reference for the future river basin pilot study of blue and green water management and its green water compensation standard estimation, which has a certain degree of application value and practical significance.

Key words: blue water, green water, SWAT, game theory, green water credits, eco-compensation, Lianshui basin

[1] 操信春, 束锐, 郭相平, 邵光成, 王振昌. 基于BWSI与GWSI的江苏省农业生产水资源压力评价[J]. 长江流域资源与环境, 2017, 26(06): 856-864.
[2] 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914.
[3] 杨欣, 蔡银莺, 张安录. 农田生态补偿横向财政转移支付额度研究——基于选择实验法的生态外溢视角[J]. 长江流域资源与环境, 2017, 26(03): 368-375.
[4] 胡小飞, 傅春, 陈伏生, 杨丽. 基于水足迹的区域生态补偿标准及时空格局研究[J]. 长江流域资源与环境, 2016, 25(09): 1430-1437.
[5] 肖建红, 王敏, 于庆东, 刘娟, 张志刚. 海岛旅游绿色发展生态补偿标准研究——以浙江舟山普陀旅游金三角为例[J]. 长江流域资源与环境, 2016, 25(08): 1247-1255.
[6] 卢新海, 柯善淦. 基于生态足迹模型的区域水资源生态补偿量化模型构建——以长江流域为例[J]. 长江流域资源与环境, 2016, 25(02): 334-341.
[7] 刘瑶, 江辉, 方玉杰, 王静岚, 闫喜凤. 基于SWAT模型的昌江流域土地利用变化对水环境的影响研究[J]. 长江流域资源与环境, 2015, 24(06): 937-942.
[8] 夏智宏, 周月华, 许红梅. 基于SWAT模型的汉江流域水资源对气候变化的响应[J]. 长江流域资源与环境, 2010, 19(2): 158-.
[9] 张利平, 陈小凤, 张晓琳, 宋星原. VIC模型与SWAT模型在中小流域径流模拟中的对比研究[J]. 长江流域资源与环境, 2009, 18(8): 745-.
[10] 王飞儿 徐向阳 方志发 俞洁. 基于COD通量的钱塘江流域水污染生态补偿量化研究[J]. 长江流域资源与环境, 2009, 18(3): 259-263.
[11] 许月卿,蔡运龙. 土壤侵蚀经济损失分析及价值估算——以贵州省猫跳河流域为例[J]. 长江流域资源与环境, 2006, 15(4): 470-474.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘昭伟,陈永灿,申满斌. 三峡水库水质模型的选取和系统集成[J]. 长江流域资源与环境, 2004, 13(2): 128 -132 .
[2] 王云才,李 飞,陈 田. 江南水乡古镇城市化倾向及其可持续发展对策——以乌镇、西塘、南浔三镇为例[J]. 长江流域资源与环境, 2007, 16(6): 700 .
[3] 许莉莉|蔡道明|吴宜进. 1959~2008年湖北省暴雨的气候变化特征[J]. 长江流域资源与环境, 2011, 20(09): 1143 .
[4] 刘琼峰,李明德,吴海勇,秦红灵,魏文学,吴小丹. 城郊农田土壤Pb、Cd的空间变异与评价研究[J]. 长江流域资源与环境, 2012, 21(02): 195 .
[5] 王文举|范允奇. 碳税对区域能源消费、经济增长和收入分配影响实证研究[J]. 长江流域资源与环境, 2012, 21(04): 442 .
[6] 陈 实 |高 超 |黄银兰. 不同季节划分尺度下巢湖流域气候变化趋势分析[J]. 长江流域资源与环境, 2013, 22(5): 582 .
[7] 乔晓景 | 何报寅 |张 文 |李元征 |苏振华. 基于MODIS的长江中游河段悬浮泥沙浓度反演[J]. 长江流域资源与环境, 2013, 22(08): 1090 .
[8] 朱明勇, 谭淑端, 张全发. 基于GIS和USLE的小流域土壤侵蚀定量评价[J]. 长江流域资源与环境, 2013, 22(12): 1572 .
[9] 毛光君,雷坤,杨丽标. 马颊河水系三条河流水质变化及污染物入海通量分析[J]. 长江流域资源与环境, 2014, 23(09): 1301 .
[10] 张 颖,徐 辉. 基于MCR模型的农村居民点布局适宜性分区及优化模式研究——以南京市六合区金牛湖街道为例[J]. 长江流域资源与环境, 2014, 23(11): 1485 .