长江流域资源与环境 >> 2016, Vol. 25 >> Issue (07): 1112-1120.doi: 10.11870/cjlyzyyhj201607013

• 生态环境 • 上一篇    下一篇

川南山地林分变化对土壤物理性质和抗蚀性的影响

闫思宇1, 王景燕1, 龚伟1, 罗建跃1, 苏黎明2, 舒正悦1, 赵昌平1, 蔡煜1   

  1. 1. 四川农业大学林学院, 水土保持与荒漠化防治四川省重点实验室, 四川 成都 611130;
    2. 平武县水土保持办公室, 四川 绵阳 622550
  • 收稿日期:2015-11-13 修回日期:2016-03-10 出版日期:2016-07-20
  • 通讯作者: 龚伟 E-mail:gongwei@sicau.edu.cn
  • 作者简介:闫思宇(1993~),女,硕士研究生,主要从事林业生态工程方面研究.E-mail:yansiyu865662971@163.com
  • 基金资助:
    国家自然科学基金项目(41201296、41061140515);国家“十二五”科技支撑计划项目(2011BAC09B05);土壤与农业可持续发展国家重点实验室开放课题(0812201244)共同资助

EFFECTS OF FOREST CHANGE ON SOIL PHYSICAL PROPERTIES AND ANTI-ERODIBILITY IN SOUTHERN SICHUAN MOUNTAINS

YAN Si-yu1, WANG Jing-yan1, GONG Wei1, LUO Jian-yue1, SU Li-ming2, SHU Zheng-yue1, ZHAO Cang-ping1, CAI Yu1   

  1. 1. Sichuan Provincial Key Laboratory of Soil & Water Conservation and Desertification Control, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China;
    2. Pingwu water and soil conservation office, Mianyang 622550, China
  • Received:2015-11-13 Revised:2016-03-10 Online:2016-07-20
  • Supported by:
    National Natural Science Foundation Project (41201296、41061140515);Technology Support Project of the 12th Five-Year Plan (2011BAC09B05);State Key Laboratory of Soil and Agricultural Sustainable Development Open Issue(0812201244)

摘要: 以川南天然林(TRL)及其转变成的毛竹林(MZL)、檫木林(CML)、柳杉林(LSL)、杉木林(SML)和水杉林(SSL)为对象,研究不同林分土壤物理性质和抗蚀性差异,以主成分分析法(ZCFM)和隶属函数法(LSHM)分别计算的土壤抗蚀性综合值Ⅰ(KSX-Ⅰ)和Ⅱ(KSX-Ⅱ)评价林分变化对土壤抗蚀性的影响,探索简便易行的土壤抗蚀性综合评价方法。结果表明,天然林转变为人工林后土壤物理性质和抗蚀性变差,呈现出有机质和>0.25 mm水稳性团聚体含量、水稳性团聚体平均重量直径、团聚度、孔隙度及物理稳定性指数降低,而结构体破坏率、不稳定团粒指数、容重、分散率及侵蚀系数增加。各林分土壤KSX-Ⅰ和KSX-Ⅱ均呈现出TRL > CML > SSL > LSL > MZL > SML的规律变化。土壤抗蚀性指标间相关性均达到显著(p<0.05)水平;土壤KSX-Ⅰ和KSX-Ⅱ之间呈显著相关关系(p<0.05),且两者均与各抗蚀性指标间呈显著相关(p<0.05)。说明天然林植被变化后会使土壤抗蚀性降低,影响原有植被水土保持功能,应该加强天然林及其生态功能保护;ZCFM和LSHM均可作为计算土壤抗蚀性综合值的有效方法,但考虑到计算过程的难易度,后者更简便易行。结果为土壤抗蚀性综合评价新方法的建立提供了参考。

关键词: 植被变化, 土壤物理性质, 土壤抗蚀性, 综合评价

Abstract: Soil physical properties and anti-erodibility were determined under natural forest (TRL) and artificial plantations of Phyllostachys heterocycla (MZL), Sassafras tzumu (CML), Cryptomeria fortunei (LSL), Cunninghamia Lanceolata (SML) and Metasequoia glyptostroboides (SSL) which were converted from TRL in southern Sichuan Province. The methods of principal component analysis (ZCFM) and membership function (LSHM) were used to calculate the comprehensive valueⅠ(KSX-Ⅰ) and Ⅱ(KSX-Ⅱ) of soil anti-erodibility, respectively, to evaluate the impact of forest change on soil anti-erodibility and explore a simple and feasible soil anti-erodibility evaluation method. The results showed that natural forest converted to artificial forests, leading to worse soil physical properties and anti-erodibility, and decreasing content of soil organic matter, >0.25 mm water stable aggregate, mean weight diameter of water stable aggregate, aggregate degrees, porosity and physical stability index; on the contrary, the ratio of soil structure deterioration, unstable aggregate index, bulk density, dispersion rate and erosion coefficient increased. The KSX-Ⅰ and KSX-Ⅱ of soil anti-erodibility under different forest types ranked as TRL > CML > SSL > LSL > MZL > SML. Significant (p<0.05) correlations were observed between the indices of soil anti-erodibility. The KSX-Ⅰwas significant (p<0.05) correlated with KSX-Ⅱ, and both were significant (p<0.05) correlated with all indices of soil anti-erodibility. Our results suggest that soil anti-erodibility and water and soil conservation will become worse after natural forest change, and the protection of natural forest and its ecosystem should be strengthened; both ZCFM and LSHM were effective methods to calculate comprehensive value of soil anti-erodibility, while the latter is more simple and convenient than the former when the difficulty degree of calculation process was took into consideration. The results could provide references for developing new methods for comprehensive evaluation of soil anti-erodibility.

Key words: vegetation change, soil physical properties, soil anti-erodibility, comprehensive evaluation

中图分类号: 

  • S157.1
[1] LI J. Scientists line up against dam that would alter protected wetlands[J]. Science, 2009, 326(5952):508-509.
[2] DAI X, WAN R R, YANG G S. Non-stationary water-level fluctuation in China's Poyang Lake and its interactions with Yangtze River[J]. Journal of Geographical Sciences, 2015, 25(3):274-288.
[3] 刘元波,赵晓松,吴桂平.近十年鄱阳湖区极端干旱事件频发现象成因初析[J].长江流域资源与环境, 2014, 23(1):131-137.[LIU Y B, ZHAO X S, WU G P. A primary investigation on the formation of frequent droughts in the Poyang lake basin in recent decade[J]. Resources and Environment in the Yangtze Basin, 2014, 23(1):131-137.]
[4] HU Q, FENG S, GUO H, et al. Interactions of the Yangtze river flow and hydrologic processes of the Poyang Lake, China[J]. Journal of Hydrology, 2007, 347(1-2):90-100.
[5] 罗蔚,张翔,邓志民,等. 1956-2008年鄱阳湖流域水沙输移趋势及成因分析[J].水科学进展, 2014, 25(5):658-667.[LUO W, ZHANG X, DENG Z M, et al. Runoff and sediment load transport and cause analysis in Poyang Lake basin over the period 1956-2008[J]. Advances in Water Science, 2014, 25(5):658-667.]
[6] 万荣荣,杨桂山,王晓龙,等.长江中游通江湖泊江湖关系研究进展[J].湖泊科学, 2014, 26(1):1-8.[WAN R R, YANG G W, WANG X L, et al. Progress of research on the relationship between the Yangtze River and its connected lakes in the middle reaches[J]. Journal of Lake Sciences, 2014, 26(1):1-8.]
[7] 刘发根,王仕刚,郭玉银,等.鄱阳湖入湖、出湖污染物通量时空变化及影响因素[J].湖泊科学, 2014, 26(5):641-650.[LIU F G, WANG S G, GUO Y G, et al. Spatial-temporal Variation of Water Quality and Water Level Effect on Water Quality in Poyang Lake[J]. Journal of Lake Sciences, 2014, 26(5):641-650.]
[8] 胡春华,周文斌,肖化云,等.鄱阳湖富营养化现状及其正态分布特征分析[J].人民长江, 2010, 41(19):64-68.[HU C H, ZHOU W B, XIAO H Y, et al. Eutrophication state and normal distribution features of Poyang Lake[J].Yangtze River, 2010, 41(19):64-68.]
[9] 胡振鹏,葛刚,刘成林.鄱阳湖湿地植被退化原因分析及其预警[J].长江流域资源与环境, 2015, 24(3):381-386.[HU Z P, GE G, LIU C L. Cause analysis and early warning for wetland vegetation degradation in Poyang Lake[J]. Resources and Environment in the Yangtze Basin, 2015, 24(3):381-386.]
[10] 张萌,倪乐意,徐军,等.鄱阳湖草滩湿地植物群落响应水位变化的周年动态特征分析[J].环境科学研究, 2013, 26(10):1057-1063.[ZHANG M, NI L Y, XU J, et al. Annual dynamics of the wetland plants community in Poyang Lake in response to water-level variations[J].Research of Environmental Sciences, 2013, 26(10):1057-1063.]
[11] 葛刚,李恩香,吴和平,等.鄱阳湖国家级自然保护区的外来入侵植物调查[J].湖泊科学, 2010, 22(1):93-97.[GE G, LI E X, WU H P, et al. Invasive plants in the national nature reserve of Lake Poyang[J]. Journal of Lake Sciences, 2010, 22(1):93-97.]
[12] 胡振鹏,葛刚,刘成林.越冬候鸟对鄱阳湖水文过程的响应[J].自然资源学报, 2014, 29(10):1770-1779.[HU Z P, GE G, LIU C L. Response of wintering migratory birds to hydrological processes in Poyang Lake[J]. Journal of Natural Resources, 2014, 29(10):1770-1779.]
[13] 余莉,何隆华,张奇,等.三峡工程蓄水运行对鄱阳湖典型湿地植被的影响[J].地理研究, 2011, 30(1):134-14.[YU L, HE L H, ZHANG Q, et al. Effects of the Three Gorges Project on the typical wetland vegetations of Poyang Lake[J]. Geographical Research, 2011, 30(1):134-14.]
[14] ZHAO M J, CONG P H, BARTER M, et al. The changing abundance and distribution of Greater White-fronted Geese Anser albifrons in the Yangtze River floodplain:impacts of recent hydrological changes[J]. Bird Conservation International, 2012, 22, 135-143.
[15] JIA Y, JIAO S, ZHANG Y, et al. Diet Shift and Its Impact on Foraging Behavior of Siberian Crane (Grus Leucogeranus) in Poyang Lake[J]. Plos One, 2013, 8(6):e65843.
[16] 丁文峰,李占斌.土壤抗蚀性的研究动态[J].水土保持科技情报, 2001(1):36-39.
[17] 胡建忠,范小玲,王愿昌,等.黄土高原沙棘人工林地土壤抗蚀性指标探讨[J].水土保持通报, 1998, 18(2):25-30.[HU J Z, FAN X L, WANG Y C, et al. Soil anti-erodibility indexes of hippophae rhamnoides forest in loess plateau[J]. Bulletin of Soil and Water Conservation, 1998, 18(2):25-30.]
[18] 薛萐,刘国彬,张超,等.黄土丘陵区人工灌木林土壤抗蚀性演变特征[J].中国农业科学, 2010, 43(15):3143-3150.[XUE S, LIU G BI, ZHANG C, et al. Change of soil anti-erodibility of artificial shrubs in loess hilly area[J]. Scientia Agricultura Sinica, 2010, 43(15):3143-3150.]
[19] 王云琦,王玉杰,朱金兆.重庆缙云山典型林分林地土壤抗蚀性分析[J].长江流域资源与环境, 2005, 14(6):775-780.[WANG Y Q, WANG Y J, ZHU J Z. Anti-erodibility analysis in forest soil of typical forests in Jinyun Mountain in Chongqing city[J]. Resources and Environment in the Yangtze Basin, 2005, 14(6):775-780.]
[20] 王景燕,胡庭兴,龚伟,等.川南地区不同退耕地对土壤抗蚀性的影响[J].中国水土保持, 2010(12):30-33.[WANG J Y,HU T X, GONG W, et al. Influence of diffrent abandoned lands to corrosion resistance of soil in southern Sichuan province[J]. Soil and Water Conservation in China, 2010(12):30-33.]
[21] 白秀梅,韩有志,郭汉清,关帝山不同植被恢复类型土壤抗蚀性研究[J].水土保持学报, 2014, 28(2):79-84.[BAI X M, HAN Y Z, GUO H Q. Study on soil anti-erodibility of different vegetation restoration types in Guandi Mountain[J]. Journal of Soil and Water Conservation, 2014, 28(2):79-84.]
[22] 刘旦旦,张鹏辉,王健,等.黄土坡面不同土地利用类型土壤抗蚀性对比[J].林业科学, 2013, 49(9):102-106.[LIU D D, ZHANG P H, WANG J, et al. A comparison on soil anti-erodibility over different land use types on loess slop[J]. Scientia Silvae Sinicae, 2013, 49(9):102-106.]
[23] 井光花,于兴修,李振炜.土壤可蚀性研究进展综述[J].中国水土保持, 2011(10):44-47.[JING G H, YU X XI, LI Z W, Summary of study progress on soil erodibility[J]. Soil and Water Conservation in China, 2011(10):44-47.]
[24] PEREZ-RODRIGUEZ R., MARQUES M.J., BIENES R.. Spatial variability of the soil erodibility parameters and their relation with the soil map at subgroup level[J]. Science of the Total Environment, 2007(378):166-173.
[25] 王佩将,戴全厚,丁贵杰.退化喀斯特植被恢复过程中的土壤抗蚀性变化[J].土壤学报, 2014, 51(4):807-815.[WANG P J, DAI Q H, DING G J. Variation of soil anti-erodibility during restoration of degraded Karst vegetation[J]. Acta Pedologica Sinica, 2014, 51(4):807-815.]
[26] XU M X., LI Q, WILSON G. Degradation of soil physicochemical quality by ephemeral gully erosion on sloping cropland of the Hilly Loess Plateau, China[J]. Soil & Tillage Research, 2016, 155:9-18.
[27] 张永东,吴淑芳,冯浩,等.土壤侵蚀过程中坡面流水力学特性及侵蚀动力研究评述[J].土壤, 2013, 45(1):26-33.[ZHANG Y D, WU S F, FENG H, et al. Review on hydraulic characteristics and erosion dynamics of overland flow in soil erosion process[J]. Soils, 2013, 45(1):26-33.]
[28] COTLER H., ORTEGA-LARROCEA M.P.. Effects of land use on soil erosion in a tropical dry forest ecosystem, Chamla watershed, Mexico[J]. Catena, 2006, 65(2):107-117.
[29] 杨玉盛,何宗明,林光跃,等.不同治理模式对严重退化红壤抗蚀性影响的研究[J].土壤侵蚀与水土保持学报, 1996, 2(2):36-42.[YANG Y S, HE Z M LIN G Y, et al. Effect of different control model on anti-erodibility of seriously deteriorated red soil[J]. Journal of Soil Erosion and Soil and Water Conservation, 1996, 2(2):36-42.]
[30] 范川,周义贵,李贤伟,等.柏木低效林改造不同模式土壤抗蚀性对比[J].林业科学, 2014, 50(6):107-114.[FAN C, ZHOU Y G, LI X W, et al. Comparison of soil anti-erodibility of different modes for reforming low efficiency stands of Cupressus funebris[J]. Scientia Silvae Sinicae, 2014, 50(6):107-114.]
[31] 王云琦,王玉杰,刘楠.三峡库区典型林分土壤抗侵蚀性能及评价[J].北京林业大学学报, 2010, 32(6):54-60.[WANG Y Q, WANG Y J, LIU N. Capability of soil erosion resistance and evaluation on it for typical forests in Three Gorges Reservoir area[J]. Journal of Beijing Forestry University, 2010, 32(6):54-60.]
[32] 赵溪,李君剑,李洪建.关帝山不同植被恢复类型对土壤碳、氮含量及微生物数量的影响[J].生态学杂志,2010, 29(11):2102-2110.[ZHAO X, LI J J, LI H J. Effects of vegetation restoration type on soil carbon,nitrogen,and microbial quantity in Guandi Mountain[J]. Chinese Journal of Ecology, 2010, 29(11):2102-2110.]
[33] 薛萐,李占斌,李鹏,等.不同植被恢复模式对黄土丘陵区土壤抗蚀性的影响[J].农业工程学报, 2009, 25(Supp.1):69-72.[XUE S, LI Z B, LI P, et al. Effects of different vegetation restoration models on soil anti-erodibility in loess hilly area[J]. Transactions of the CSAE, 2009, 25(Supp.1):69-72.]
[34] 戴全厚,薛萐,刘国彬,等.侵蚀环境撂荒地植被恢复与土壤质量的协同效应[J].中国农业科学, 2008,41(5):1390-1399.[DAI Q H, XUE S, LIU G B. The synergistic effect between vegetation recovery and soil quality on abandoned arable land in eroded Hilly Loess Plateau[J]. Scientia Agricultura Sinica, 2008, 41(5):1390-1399.]
[35] 王晶,丁德蓉,何丙辉,等.三峡库区撑绿竹护岸林土壤抗蚀性能研究[J].水土保持学报, 2004, 18(6):38-40.[WANG J,DING D R,HE B H,et al. Study on soil anti-erodibility behavior of bambusa pervariabilis×Dendrocalamopsisi retaining woodlands in Three Gorges reservoir area[J]. Journal of Soil and Water Conservation, 2004, 18(6):38-40.]
[36] 中国标准出版社.中国林业标准汇编(营造林卷)[M].北京:中国标准出版社, 1998.[Standards Press of China. The collection of china forestry standardization (Afforestation volume)[M]. Beijing:Standards Press of China, 1998.]
[37] 刘孝义,依艳丽.土壤物理学基础及其研究法[M].沈阳:东北大学出版社, 1998.[LIU X Y, YI Y L. Soil physics basis and research methods[M]. Shenyang:Dobei University Press, 1998.]
[38] 杨玉盛,何宗明,陈光水,等.不同生物治理措施对赤红壤抗蚀性影响的研究[J].土壤学报, 1999, 36(4):529-534.[YANG Y S, HE Z M, CHEN G S, et al. A study on lateritic red soil anti-erodibility under different biological treatments[J]. Acta Pldologica Sinica, 1999, 36(4):529-534.]
[39] 宫阿都,何毓蓉.金沙江干热河谷典型区(云南)退化土壤的结构性与形成机制[J].山地学报, 2001, 19(3):213-21.[GONG A D, HE Y R. The structure feature and formation mechanism of the degraded soil in dry-hot valley region of the Jinsha River, Yunnan Province, China[J]. Journal of Mountain Science, 1999, 36(4):529-534.]
[40] 胡建忠,张伟华,李文忠,等.北川河流域退耕地植物群落土壤抗蚀性研究[J].土壤学报, 2004, 41(6):854-863.[HU J Z, ZHANG W H, LI W Z, et al. Effect of plant community on anti-erodibility of land under rehabilitation in Beichuanhe basin[J]. Acta Pedologica Sinica, 2004, 41(6):854-863.]
[41] 何腾兵.贵州山区土壤物理性质对土壤侵蚀影响的研究[J].土壤侵蚀与水土保持学报, 1995, 1(1):85-95.[HE T B. Study on effect of soil physical properties on soil erosion in Guizhou mountainous region[J]. Journal of Soil Erosion and Soil and Water Conservation, 1995, 1(1):85-95.]
[42] 苏永中,赵文智.土壤有机碳动态:风蚀效应[J].生态学报, 2005, 25(8):2049-2054.[SU Y Z, ZHAO W Z. Soil organic carbon dynamics:wind erosion effect[J]. Acta Ecological Sinica, 2005, 25(8):2049-2054.]
[43] 林海明,张文霖.主成分分析与因子分析的异同和SPSS软件--兼与刘玉玫、卢纹岱等同志商榷[J].统计研究, 2005(3):65-69.[LIN H M, ZHANG W L. The relationship between principal component analysis and factor analysis and SPSS software--To discuss with comrade LIU Yu-mei, LU Wen-dai etc[J]. Statistical Research, 2005(3):65-69.]
[44] 黎建强,张洪江,陈奇伯,等.长江上游不同植物篱系统土壤抗冲、抗蚀特征[J].生态环境学报, 2012, 21(7):1223-1228.[LI J Q, ZHANG H JI, CHEN Q B, et al. Anti-scourability and anti-erodibility of soil under different hedgerow systems in upper reaches of Yangtze River[J]. Ecology and Environmental Sciences, 2012, 21(7):1223-1228.]
[45] 查小春,唐克丽.黄土丘陵林区开垦地人为加速侵蚀与土壤物理力学性质的时间变化[J].水土保持学报, 2001, 15(3):20-23.[ZHA X C, TANG K L. Temporal change about man-made accelerated erosion and soil physical and force properties of reclaimed forest lands in loess hilly region[J]. Journal of Soil and Water Conservation, 2001,15(3):20-23.]
[46] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000.[LU R K. Analysis methods of soil agricultural chemistry[M]. Beijing:Agricultural Science and Technology Press of China, 2000.]
[47] 史晓梅,史东梅,文卓立.紫色土丘陵区不同土地利用类型土壤抗蚀性特征研究[J].水土保持学报, 2007, 21(4):63-66.[SHI X M, SHI D M, WEN Z L. Study on soil anti-erodibility of different land utilization types in purple soil hilly region[J]. Journal of Soil and Water Conservation, 2007, 21(4):63-66.]
[48] 丛日亮,黄进,张金池,等.苏南丘陵区主要林分类型土壤抗蚀性分析[J].生态环境学报, 2010, 19(8):1862-1867.[CONG R L, HUANG J, ZHANG J C, et al. Analysis of soil anti-erodibility of main forest types in the south hilly region of Jiangsu province[J]. Ecology and Environmental Sciences, 2010, 19(8):1862-1867.]
[49] 龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤微团聚体分形特征研究[J].土壤学报, 2007, 44(3):571-575.[GONG W, HU T X, WANG J Y, et al. Fractal features of soil microaggregates in soils under natural and regenerated evergreen broadleaved forests in south Sichuan province[J]. Acta Pedologica Sinica, 2007, 44(3):571-575.]
[50] 赵哈林,周瑞莲,苏永中,等.科尔沁沙地沙漠化过程中土壤有机碳和全氮含量变化[J].生态学报, 2008, 28(3):976-982.[ZHAO H L, ZHOU R L, SU Y Z, et al. Changes of soil organic C and total N contents as affected by desertification in Horqin Sand land, north China[J]. Acta Ecologica Sinica, 2008, 28(3):976-982.]
[51] BLANCO-MOURE N., GRACIA R., C.BIELSA A., et al. Soil organic matter fractions as affected by tillage and soil texture under semiarid Mediterranean conditions[J]. Soil and Tillage Research, 2016, 155:381-389.
[52] 黄茹,黄林,何丙辉,等.三峡库区不同林草措施土壤活性有机碳及抗蚀性研究[J].环境科学, 2013, 34(7):2800-2808.[HUANG R, HUANG L, HE B H, et al. Effects of biological regulated measurse on active organic carbon and erosion resistance in the Three Gorges Reservoir region soil[J]. Environmental Science, 2013, 34(7):2800-2808.]
[53] 杨秀清,韩有志.关帝山森林土壤有机碳和氮素的空间变异特征[J].林业科学研究, 2011, 24(2):223-229.[YANG X Q, HAN Y Z. Spatial variations of soil organic carbon and nitrogen of forestland in Guandi Mountain[J]. Forest Research, 2011, 24(2):223-229.]
[54] 姜培坤,俞益武,徐秋芳.商品林地土壤物理性质演变与抗蚀性能的评价[J].水土保持学报, 2002, 16(1):112-115.[JIANG P K, YU Y W, XU Q F. Assessment on evolving law of soil physical properties and erosion resistance of land with different commercial forest[J]. Journal of Soil and Water Conservation, 2002, 16(1):112-115.]
[55] 宫阿都,何毓蓉.金沙江干热河谷区退化土壤结构的分形特征研究[J].水土保持学报, 2001, 15(3):112-115.[GONG A D, HE Y R. Study on fractal features of soil structure of degraded soil in dry and hot valley region of Jinsha River[J]. Journal of Soil and Water Conservation, 2001, 15(3):112-115.]
[56] 朱冰冰,李占斌,李鹏,等.土地退化/恢复中土壤可蚀性动态变化[J].农业工程学报, 2009, 25(2):56-61.[ZHU B B, LI Z, LI P, et al. Dynamic changes of soil erodibility during process of land degradation and restoration[J]. Transactions of the CSAE, 2009, 25(2):56-61.]
[1] 王秀, 王振祥, 潘宝, 周春财, 刘桂建. 南淝河表层水中重金属空间分布、污染评价及来源[J]. 长江流域资源与环境, 2017, 26(02): 297-303.
[2] 赵敏, 张丽旭. 长江口海域表层沉积物环境质量的综合评价[J]. 长江流域资源与环境, 2016, 25(02): 284-291.
[3] 张萌, 祝国荣, 周慜, 李惠民, 陆友伟, 刘足根. 仙女湖富营养化特征与水环境容量核算[J]. 长江流域资源与环境, 2015, 24(08): 1395-1404.
[4] 龚艳冰, 刘高峰, 冯兰萍, 张继国, 胡娜. 江苏省水资源短缺风险的相似云评价方法研究[J]. 长江流域资源与环境, 2015, 24(06): 931-936.
[5] 朱天明, 杨桂山, 苏伟忠, 李峻峰. 兴化市小城镇土地集约利用综合评价研究[J]. 长江流域资源与环境, 2010, 19(01): 24-.
[6] 刘志勇 赖格英 潘少明. 赣江源头流域植被变化的水文响应模拟研究[J]. 长江流域资源与环境, 2009, 18(5): 446-.
[7] 吴佳鹏 陈凯麒. 基于灰色模糊理论的流域水电规划环境影响综合评价[J]. 长江流域资源与环境, 2009, 18(3): 281-285.
[8] 黄强,张泽中,李群,王义民,齐青青. 河流生态用水综合评价[J]. 长江流域资源与环境, 2008, 17(6): 939-939.
[9] 张学权,|胡庭兴. 林(竹)草不同植被恢复模式下的土壤物理特性[J]. 长江流域资源与环境, 2008, 17(4): 623-623.
[10] 金晓斌,易理强,王慎敏,周寅康. 基于协调发展视角的区域发展差异研究[J]. 长江流域资源与环境, 2008, 17(4): 511-511.
[11] 葛振鸣,周晓,程健敏,陈邦林, 王天厚,王开运,5. 生态型港口综合评价指标体系初探[J]. 长江流域资源与环境, 2008, 17(3): 329-.
[12] 王宜虎. 江苏沿江各市工业绿色化程度的模糊评价[J]. 长江流域资源与环境, 2008, 17(2): 170-170.
[13] 邵晓梅,王 静. 小城镇耕地集约利用评价方法比较研究 ——以浙江省慈溪市为例[J]. 长江流域资源与环境, 2008, 17(1): 93-93.
[14] 严圣华, 李兆华, 周振兴. 九宫山自然保护区功能模糊综合评价[J]. 长江流域资源与环境, 2007, 16(4): 446-446.
[15] 孙爱荣,周爱国,梁合诚,鄂 建. 九江市地下水易污性评价——基于DPASTIC指标的模糊综合评价模型[J]. 长江流域资源与环境, 2007, 16(4): 499-499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘爱霞,刘正军,王 静. 基于PCA变换和神经元网络分类方法的中国森林制图研究[J]. 长江流域资源与环境, 2006, 15(1): 19 -24 .
[2] 张晓平,樊 杰. 长江上游生态脆弱区生态屏障建设与产业发展战略研究——以昭通市为例[J]. 长江流域资源与环境, 2006, 15(3): 310 -314 .
[3] 李书恒, 郭 伟, 施晓冬, 朱大奎. 舟山群岛海洋环境资源及其开发利用[J]. 长江流域资源与环境, 2007, 16(4): 425 .
[4] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[5] 叶 浩,濮励杰,张 健. 我国粮食主产区耕地产出效率研究[J]. 长江流域资源与环境, 2008, 17(4): 584 .
[6] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[7] 张智, 张显忠. 三峡库区泥沙对不同初始浓度硅藻生长影响[J]. 长江流域资源与环境, 2006, 15(Sup1): 116 -119 .
[8] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[9] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[10] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .