长江流域资源与环境 >> 2016, Vol. 25 >> Issue (09): 1448-1456.doi: 10.11870/cjlyzyyhj201609016

• 自然灾害 • 上一篇    下一篇

汉江流域1960~2014年降雨极值时空变化特征

李丹1, 郭生练1, 洪兴骏1, 郭靖2   

  1. 1. 武汉大学水资源与水电工程科学国家重点实验室, 湖北 武汉 430072;
    2. 中国电建集团华东勘测设计研究院有限公司, 浙江 杭州 310012
  • 收稿日期:2016-01-06 修回日期:2016-04-13 出版日期:2016-09-20
  • 作者简介:李丹(1980~),女,高级工程师,博士后,主要从事水文学及水资源管理等方面的研究工作.E-mail:54dli@163.com
  • 基金资助:
    国家自然科学基金重点项目(51539009);国家自然科学基金青年基金项目(41401018)

TEMPORAL AND SPATIAL VARIATION OF RAINFALL EXTREMES IN HAN RIVER BASIN FROM 1960 TO 2014

LI Dan1, GUO Sheng-lian1, HONG Xing-jun1, GUO Jing2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan 430072, China;
    2. PowerChina Huadong Engineering Corporation Limited, Hangzhou 310012, China
  • Received:2016-01-06 Revised:2016-04-13 Online:2016-09-20
  • Supported by:
    Key Program of National Natural Science Foundation of China (51539009);National Natural Science Foundation of China (41401018)

摘要: 深入研究降雨极值的时空变化规律和特点,有助于提高应对极端灾害的能力。通过构建PDS/GP模型,并引入降雨极值变化指标,结合统计检验分析汉江流域15个气象站点1960~2014年春、夏、秋季以及全年月降雨超定量系列的年际变化特征;利用复杂网络理论的聚类系数和节点度,结合各站点在典型年份春、夏和秋季的降雨极值变化指标,分析月降雨极值的空间分布特征。分析结果表明:从时间上看,汉江流域月降雨极值年际变化的季节性差异较大,近55 a没有明显的一致性变化趋势。受季风气候影响,夏季的月降雨极值年际变化与春、秋季相反,而秋季的变异指标年际波动最大。从空间上看,受季风气候、下垫面条件和人类活动等多种因素的综合作用,中下游月降雨极值变化的差异性要高于上游。随着相关阈值的增大,流域站网总体关联度有所降低。相同阈值下的结果表明空间上相邻的站点其关联性差异较大,部分相距较远的站点具有更大的关联性,分析结果可为降雨极值的空间插值提供参考。

关键词: 降雨极值, PDS/GP模型, 聚类系数, 汉江流域

Abstract: A deeper understanding of the spatiotemporal variation of rainfall extremes will help improve the ability in response to extreme disasters. The PDS/GP model for Han River basin was constructed and the Rainfall Extremes Variation Index (REVI) was proposed to analyze the annual variation of monthly rainfall extremes for the different seasons and full year from 1960 to 2014 by combing the statistical test. The study was based on a 55-year partial duration series of rainfall data from 15 gauging stations in Han River basin. Meanwhile the clustering coefficient and node degree based on the network theory was employed to study the spatial distribution on the basis of REVI in typical years for different seasons. The results show that the seasonal difference of monthly rainfall extremes was quite remarkable in Han River basin, and there were no uniform trends in recently 55 years. Among the three seasons, the situation in summer is quite opposite to that in spring and autumn, while the highest annual fluctuation was present in autumn because of monsoon climate. Spatially, by the comprehensive effects of monsoon climate, underlying surface conditions and human activities, the most dramatic change can be found in the upper reach of Han River. With increasing correlation threshold, the connectivity between stations in the whole basin decreased, which was larger in the upstream than in the middle and lower reaches of Han River. For the same correlation threshold, the results also indicated that even nearest stations had significantly different connectivity, and even some distant stations had very similar connectivity properties. The results can provide a reference for spatial interpolation of rainfall extremes.

Key words: rainfall extreme, PDS/GP model, clustering coefficient, Han River basin

中图分类号: 

  • TV125
[1] 杨涛, 陆桂华, 李会会, 等. 气候变化下水文极端事件变化预测研究进展[J]. 水科学进展, 2011, 22(2):279-286. [YANG T, LU G H, LI H H, et al. Advances in the study of projection of climate change impacts on hydrological extremes[J]. Advances in Water Science, 2011, 22(2):279-286.]
[2] NORBIATO D, BORGA M, SANGATI M, et al. Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood[J]. Journal of Hydrology, 2007, 345(3/4):149-166.
[3] 苏布达, 姜彤. 长江流域降水极值时间序列的分布特征[J]. 湖泊科学, 2008, 20(1):123-128. [SU B D, JIANG T. Distribution feature of time series of extreme precipitation over the Yangtze river basin[J]. Journal of Lake Sciences, 2008, 20(1):123-128.]
[4] FU G B, YU J J, YU X B, et al. Temporal variation of extreme rainfall events in China, 1961-2009[J]. Journal of Hydrology, 2013, 487:48-59.
[5] VILLAFUERTE Ⅱ M Q, MATSUMOTO J, AKASAKA I, et al. Long-term trends and variability of rainfall extremes in the Philippines[J]. Atmospheric Research, 2014, 137:1-13.
[6] YADUVANSHI A, RANADE A. Effect of global temperature changes on rainfall fluctuations over river basins across Eastern Indo-Gangetic Plains[J]. Aquatic Procedia, 2015, 4:721-729.
[7] YANG T, SHAO Q X, HAO Z C, et al. Regional frequency analysis and Spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China[J]. Journal of Hydrology, 2010, 380(3/4):386-405.
[8] 张继国, 刘新仁. 降水时空分布不均匀性的信息熵分析——(Ⅰ)基本概念与数据分析[J]. 水科学进展, 2000, 11(2):133-137. [ZHANG J G, LIU X R. Information entropy analysis on nonuniformity of precipitation distribution in time-space, Ⅰ, basic concept and data analysis[J]. Advances in Water Science, 2000, 11(2):133-137.]
[9] MISHRA A K, ÖZGER M, SINGH V P. An entropy-based investigation into the variability of precipitation[J]. Journal of Hydrology, 2009, 370(1/4):139-154.
[10] WILLEMS P. Compound intensity/duration/frequency-relationships of extreme precipitation for two seasons and two storm types[J]. Journal of Hydrology, 2000, 233(1/4):189-205.
[11] NTEGEKA V, WILLEMS P. Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium[J]. Water Resources Research, 2008, 44(7):W07402.
[12] WILLEMS P. Adjustment of extreme rainfall statistics accounting for multidecadal climate oscillations[J]. Journal of Hydrology, 2013, 490:126-133.
[13] 王俊, 郭生练. 南水北调中线工程水源区汉江水文水资源分析关键技术研究与应用[M]. 北京:中国水利水电出版社, 2010:21-29. [WANG J, GUO S L. Research and application of key technique for the Hydrological Features and Water Resources of Han River in the Middle Route of South-to-North Water Transfer Project[M]. Beijing:China Water Power Press, 2010:21-29.]
[14] 蔡述明, 殷鸿福, 杜耘, 等. 南水北调中线工程与汉江中下游地区可持续发展[J]. 长江流域资源与环境, 2005, 14(4):409-412. [CAI S M, YIN H F, DU Y, et al. Effect of the middle route project of south to north water transfer on the sustainable development of the middle and lower reaches of Hanjiang river[J]. Resources and Environment in the Yangtze Basin, 2005, 14(4):409-412.]
[15] 陈华, 郭生练, 郭海晋, 等. 汉江流域1951~2003年降水气温时空变化趋势分析[J]. 长江流域资源与环境, 2006, 15(3):340-345. [CHEN H, GUO S L, GUO H J, et al. Temporal and spatial trend in the precipitation and temperature from 1951 to 2003 in the Hanjiang basin[J]. Resources and Environment in the Yangtze Basin, 2006, 15(3):340-345.]
[16] 朱明勇, 谭淑端, 张全发. 近60年汉江流域侵蚀性降雨的时空变化特征[J]. 生态环境学报, 2013, 22(9):1544-1549. [ZHU M Y, TAN S D, ZHANG Q F. Spatio-temporal variation of erosive precipitation in the Han River Basin during the past 60 years[J]. Ecology and Environmental Sciences, 2013, 22(9):1544-1549.]
[17] 史道济. 实用极值统计方法[M]. 天津:天津科技出版社, 2006. [SHI D J. Practical methods of extreme value statistics[M]. Tianjin:Tianjin Science and Technology Press, 2006.]
[18] SOLARI S, LOSADA M A. A unified statistical model for hydrological variables including the selection of threshold for the peak over threshold method[J]. Water Resources Research, 2012, 48(10):W10541.
[19] SCARROTT C, MACDONALD A. A review of extreme value threshold estimation and uncertainty quantification[J]. REVSTAT-Statistical Journal, 2012, 10(1):33-60.
[20] THOMPSON P, CAI Y Z, REEVE D, et al. Automated threshold selection methods for extreme wave analysis[J]. Coastal Engineering, 2009, 56(10):1013-1021.
[21] JONES R N, CHIEW F H S, BOUGHTON W C, et al. Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models[J]. Advances in Water Resources, 2006, 29(10):1419-1429.
[22] NTEGEKA V, BAGUIS P, ROULIN E, et al. Developing tailored climate change scenarios for hydrological impact assessments[J]. Journal of Hydrology, 2014, 508:307-321.
[23] TABARI H, AGHAKOUCHAK A, WILLEMS P. A perturbation approach for assessing trends in precipitation extremes across Iran[J]. Journal of Hydrology, 2014, 519:1420-1427.
[24] SIVAKUMAR B, WOLDEMESKEL F M. A network-based analysis of spatial rainfall connections[J]. Environmental Modelling & Software, 2015, 69:55-62.
[25] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[26] 罗霄, 李栋梁, 王慧. 华西秋雨演变的新特征及其对大气环流的响应[J]. 高原气象, 2013, 32(4):1019-1031. [LUO X, LI D L, WANG H. New evolution features of autumn rainfall in west China and its responses to atmospheric circulation[J]. Plateau Meteorology, 2013, 32(4):1019-1031.]
[1] 易凤佳, 李仁东, 常变蓉, 施媛媛, 邱娟. 2000~2010年汉江流域湿地动态变化及其空间趋向性[J]. 长江流域资源与环境, 2016, 25(09): 1412-1420.
[2] 夏智宏, 周月华, 许红梅. 基于SWAT模型的汉江流域水资源对气候变化的响应[J]. 长江流域资源与环境, 2010, 19(2): 158-.
[3] 李 娜,王学山,杨艳昭. 汉江流域上游作物水分生态适应性研究[J]. 长江流域资源与环境, 2006, 15(5): 665-669.
[4] 陈 华,郭生练,郭海晋,徐高洪,徐德龙. 汉江流域1951~2003年降水气温时空变化趋势分析[J]. 长江流域资源与环境, 2006, 15(3): 340-345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨桂芳, 彭红霞, 陈中原, 李长安, 黄俊华, 胡超涌. 兰州与江汉平原有机碳同位素的古气候指示意义对比研究[J]. 长江流域资源与环境, 2005, 14(4): 486 -490 .
[2] 胡学玉, 孙宏发, 陈德林. 铜绿山矿冶废弃地优势植物重金属的积累与迁移[J]. 长江流域资源与环境, 2008, 17(3): 436 .
[3] 宋述军,周万村. 岷江流域土地利用结构对地表水水质的影响[J]. 长江流域资源与环境, 2008, 17(5): 712 .
[4] 唐华秀,马劲松,战金艳,邓祥征. 江苏省人口数据空间离散化研究及其精度分析[J]. 长江流域资源与环境, 2008, 17(4): 506 .
[5] 王学雷,蔡述明,任宪友,陈世俭. 三峡库区湿地生态建设与保护利用[J]. 长江流域资源与环境, 2004, 13(2): 149 -153 .
[6] 尹占娥,许世远. 上海浦东新区土地利用变化及其生态环境效应[J]. 长江流域资源与环境, 2007, 16(4): 430 .
[7] 段七零. 我国原油流动的空间格局研究[J]. 长江流域资源与环境, 2008, 17(4): 573 .
[8] 张 健, 濮励杰, 彭补拙. 基于景观生态学的区域土地利用结构变化特征[J]. 长江流域资源与环境, 2007, 16(5): 578 .
[9] 黄金川,方创琳,冯仁国. 三峡库区城市化与生态环境耦合关系定量辨识[J]. 长江流域资源与环境, 2004, 13(2): 153 -158 .
[10] 张家玉, 冯慧芳. 江汉湖沼资源的开发与保护[J]. 长江流域资源与环境, 1992, 1(1): 7 .