长江流域资源与环境 >> 2017, Vol. 26 >> Issue (02): 304-313.doi: 10.11870/cjlyzyyhj201702017

• 生态环境 • 上一篇    下一篇

水布垭水库水体碳时空变化特征及其影响因素分析

赵登忠1,3, 肖潇1,3, 汪朝辉1,3, 谭德宝1,3, 陈永柏2   

  1. 1. 长江水利委员会长江科学院, 湖北 武汉 430010;
    2. 中国长江三峡集团公司, 北京 100038;
    3. 流域水资源与生态环境科学湖北省重点实验室, 湖北 武汉 430010
  • 收稿日期:2016-07-13 修回日期:2016-09-21 出版日期:2017-02-20
  • 作者简介:赵登忠(1978~),男,高级工程师,博士,主要从事内陆水域碳循环与温室气体排放方面研究.E-mail:njuzhaodz@163.com
  • 基金资助:
    科技部软科学研究计划项目(2012GXS2B008);中国长江三峡集团公司环境保护科研项目(0799562);中国清洁发展机制基金赠款项目(2013015);水利部中央级公益性科研院所基本科研业务费项目(CKSF2015018/KJ,CKSF2016263/KJ)

SPATIAL AND TEMPORAL DISTRIBUTION OF CARBON CONCENTRATION IN SURFACE WATER FROM THE SHUIBUYA RESERVOIR

ZHAO Deng-zhong1,3, XIAO Xiao1,3, WANG Zhao-hui1,3, TAN De-bao1,3, CHEN Yong-bo2   

  1. 1. Changjiang River Scientific Research Institute(CRSRI), Wuhan 430010, China;
    2. China Three Gorges Corporation, Beijing 100038, China;
    3. Hubei Key Laboratory of Water Resources & Eco-Environment Science, Wuhan 430010, China
  • Received:2016-07-13 Revised:2016-09-21 Online:2017-02-20
  • Supported by:
    Soft Science Research Project of Ministry of Science and Technology (2012GXS2B008);China Three Gorges Coorporation Environment Protection Project (0799562);China Clean Development Mechanism Fund Grant Program (2013015);Central Research Institutes of Basic Research and Public Service Special Operations for Ministry of Water Resources (CKSF2015018/KJ, CKSF2016263/KJ)

摘要: 为了评估大型水库对河流碳循环的拦截作用,选择清江流域最上游水布垭水库为典型案例,采用德国元素公司vario TOC分析仪对定期采集水样进行分析,研究新建大型水库水体碳时空分布特征及其影响因素。结果表明,水布垭水库表层水体总碳、总无机碳、溶解有机碳和颗粒有机碳平均含量分别为26.665、24.089、2.141和0.438 mg/L,在水库年内蓄水阶段呈现显著的峰值,其空间分布格局在支流库湾和坝前典型断面表现出显著的差异,在水体碳中总无机碳占据主导地位,与湖泊水体碳时空分布特征极为相似。由于受到人类活动和自然环境的双重影响,水体无机碳则与水体电导率指标具有较强的相关性,溶解有机碳则与水体温度具有直接的关系,而数量最少的颗粒有机碳则与水体叶绿素含量具有弱相关关系。研究成果可以为理解水库碳循环过程机制提供数据支持,对于开展大坝建设的河流碳循环影响评估具有重要参考意义。

关键词: 清江流域, 水布垭水库, 水库碳循环, 水体碳, 时空变化特征

Abstract: The Shuibuya Reservoir over the Qingjiang River Basin was selected as a typical reservoir to analyze the spatial and temporal distribution of carbon cycle in large hydropower reservoir intercepting rive eco-system in this study. The spatial and temporal distribution of carbon in surface water were obtained by analyzing water sampling using vario TOC analyzer in laboratory and other aquatic environment parameters was attained by HACH hydro-lab multi-parameters water quality analyzer in field experiments. The results showed that the monthly mean concentration of total carbon, total inorganic carbon, dissolved organic carbon and particulate organic carbon in surface water from the Shuibuya Reservoir were 26.665 mg/L, 24.089 mg/L, 2.141 mg/L and 0.438 mg/L, respectively during measurement. The carbon concentrations peaked in spring and autumn, while valleyed in summer and winter. Inorganic carbon accounts for most of total carbon and the spatial variation of all carbon parameters mentioned above over the whole reservoir was very different at measurement stations, which is similar with that of lakes. The Shuibuya Reservoir was affected by both human activities and natural environment. Inorganic concentration was strongly related with water conductivity, dissolved organic carbon in water was strongly related with water temperature and chlorophyll concentration in surface water exerted more influences on the spatial and temporal heterogeneity of less particulate organic carbon in surface water over the Shuibuya Reservoir. This study is expected to provide more supports and in-situ data for understanding aquatic carbon cycle of reservoir and play a pivotal role to evaluate the effects of dam construction on aquatic ecosystem.

Key words: Qingjiang Basin, Shuibuya Reservoir, aquatic carbon cycle in reservoir, carbon in surface water, spatial and temporal distribution

中图分类号: 

  • P342
[1] KAWASAKI M, OHTE N, KATSUYAMA M. Biogeochemical and hydrological controls on carbon export from a forested catchment in central Japan[J]. Ecological Research, 2005, 20(3):347-358.
[2] 刘诚刚, 宁修仁, 郝锵, 等. 海洋浮游植物溶解有机碳释放研究进展[J]. 地球科学进展, 2010, 25(2):123-132.[LIU C G, NING X R, HAO Q, et al. Advances in the study of photosynthetically produced dissolved organic carbon released of marine phytoplankton[J]. Advances in Earth Science, 2010, 25(2):123-132.]
[3] 李宁, 王江涛. 春季东海北部近岸水体中的溶解无机碳和有机碳的分布特征及其影响因素[J]. 海洋科学, 2011, 35(8):5-10.[LI N, WANG J T. Dissolved inorganic and organic carbon in the North of East China Sea (ECS) coastal waters in spring[J]. Marine Sciences, 2011, 35(8):5-10.]
[4] SONG C C, WANG L L, GUO Y D, et al. Impacts of natural wetland degradation on dissolved carbon dynamics in the Sanjiang Plain, Northeastern China[J]. Journal of Hydrology, 2011, 398(1/2):26-32.
[5] RAN L S, LU X X, SUN H G, et al. Spatial and seasonal variability of organic carbon transport in the Yellow River, China[J]. Journal of Hydrology, 2013, 498:76-88.
[6] JEONG J J, BARTSCH S, FLECKENSTEIN J H, et al. Differential storm responses of dissolved and particulate organic carbon in a mountainous headwater stream, investigated by high-frequency, in situ optical measurements[J]. Journal of Geophysical Research:Biogeosciences, 2012, 117(G3):G03013.
[7] CAI Y H, GUO L D, WANG X R, et al. Abundance, stable isotopic composition, and export fluxes of DOC, POC, and DIC from the Lower Mississippi River during 2006-2008[J]. Journal of Geophysical Research:Biogeoscience, 2015, 120(11):2273-2288.
[8] FERLAND M E, GIORGIO P A D, TEODORU C R, et al. Long-term C accumulation and total C stocks in boreal lakes in northern Québec[J]. Global Biogeochemical Cycles, 2012, 26(4):GB0E04.
[9] LARSEN S, ANDERSEN T, HESSEN D O. Predicting organic carbon in lakes from climate drivers and catchment properties[J]. Global Biogeochemical Cycles, 2011, 25(3):GB3007.
[10] UMEZAWA T, MACHIDA T, AOKI S, et al. Contributions of natural and anthropogenic sources to atmospheric methane variations over western Siberia estimated from its carbon and hydrogen isotopes[J]. Global Biogeochemical Cycles, 2012, 26(4):GB4009.
[11] 张运林, 黄群芳, 马荣华, 等. 基于反射率的太湖典型湖区溶解性有机碳的反演[J]. 地球科学进展, 2005, 20(7):772-777.[ZHANG Y L, HUANG Q F, MA R H, et al. Retrieving of dissolved organic carbon based on irradiance reflectance in typical lake zones of lake Taihu[J]. Advances in Earth Science, 2005, 20(7):772-777.]
[12] 赵登忠, 林初学, 谭德宝, 等. 清江流域水布垭水库二氧化碳大气廓线空间分布及其水环境效应[J]. 长江流域资源与环境, 2011, 20(12):1495-1501.[ZHAO D Z, LIN C X, TAN D B, et al. Spatial and vertical distribution of carbon dioxide concentration and aquatic environmental effect in the Shuibuya reservoir over Qingjiang River Basin, China[J]. Resources and Environment in the Yangtze Basin, 2011, 20(12):1495-1501.]
[13] 杨乐, 逯非, 王效科, 等. 三峡水库上空甲烷浓度时空变化及与水库甲烷通量的关系[J]. 长江流域资源与环境, 2012, 21(2):209-214.[YANG L, LU F, WANG X K, et al. Spatial and temporal variation of methane concentrations in the atmosphere of the Three Gorges reservoir and its relationship with methane emissions from the Reservoir[J]. Resources and Environment in the Yangtze Basin, 2012, 21(2):209-214.]
[14] ZHANG Y L, YIN Y, LIU X H, et al. Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China[J]. Organic Geochemistry, 2011, 42(5):510-519.
[15] ZHU W N, YU Q, TIAN Y Q, et al. An assessment of remote sensing algorithms for colored dissolved organic matter in complex freshwater environments[J]. Remote Sensing of Environment, 2014, 140:766-778.
[16] SON Y B, GARDNER W D, MISHONOV A V, et al. Multispectral remote-sensing algorithms for particulate organic carbon (POC):the Gulf of Mexico[J]. Remote Sensing of Environment, 2009, 113(1):50-61.
[17] TIAN Y Q, YU Q, FEIG A D, et al. Effects of climate and land-surface processes on terrestrial dissolved organic carbon export to major U.S. coastal rivers[J]. Ecological Engineering, 2013, 54:192-201.
[18] KELLER D P, HOOD R R. Modeling the seasonal autochthonous sources of dissolved organic carbon and nitrogen in the upper Chesapeake Bay[J]. Ecological Modelling, 2011, 222(5):1139-1162.
[19] 隋欣, 廖文根. 中国水电温室气体减排作用分析[J]. 中国水利水电科学研究院学报, 2010, 8(2):133-137.[SUI X, LIAO W G. Analysis of greenhouse gas emission reduction of hydropower in China[J]. Journal of China Institute of Water Resources and Hydropower Research, 2010, 8(2):133-137.]
[20] 李海英, 冯顺新, 廖文根. 全球气候变化背景下国际水电发展态势[J]. 中国水能及电气化, 2010(10):29-37.[LI H Y, FENG S X, LIAO W G. Development trend of international hydropower in the background of global climate change[J]. China Water Power & Electrification, 2010(10):29-37.]
[21] 王文铭, 艾尉. 低碳经济背景下我国水电发展前景分析及建议[J]. 中国水利, 2010(14):25-26.[WANG W M, AI W. Analysis on the perspective of hydropower development in China at the background of low-carbon economy and advices[J]. China Water Resources, 2010(14):25-26.]
[22] 林初学. 水坝工程建设争议的哲学思辩[J]. 中国三峡建设, 2006(6):11-15.[LIN C X. Philosophical thanking of dams construction dispute[J]. China Three Gorges Construction, 2006(6):11-15.]
[23] TREMBLAY A, VARFALVY L, ROEHM C, et al. Greenhouse gas emissions-fluxes and processes, hydroelectric reservoirs and natural environments, environmental science series[M]. Berlin Heidelberg:Springer, 2005.
[24] 李干蓉, 刘丛强, 陈椽, 等. 猫跳河流域梯级水库夏-秋季节溶解无机碳(DIC)含量及其同位素组成的分布特征[J]. 环境科学, 2009, 30(10):2891-2897.[LI G R, LIU C Q, CHEN C, et al. Dissolve inorganic carbon and its carbon isotope composition in cascade reservoir of the Maotiao River during summer and autumn[J]. Environmental Science, 2009, 30(10):2891-2897.]
[25] 刘丛强, 汪福顺, 王雨春, 等. 河流筑坝拦截的水环境响应——来自地球化学的视角[J]. 长江流域资源与环境, 2009, 18(4):384-396.[LIU C Q, WANG F S, WANG Y C, et al. Responses of aquatic environment to river damming——from the geochemical view[J]. Resources and Environment in the Yangtze Basin, 2009, 18(4):384-396.]
[26] 郭劲松, 蒋滔, 李哲, 等. 三峡水库澎溪河流域高阳回水区夏季水体CO2分压日变化特性[J]. 湖泊科学, 2012, 24(2):190-196.[GUO J S, JIANG T, LI Z, et al. Diurnal variation characteristics of pCO2 in the summer water column of Gaoyang back-water area in Pengxi River, Three Gorges Reservoir[J]. Journal of Lake Sciences, 2012, 24(2):190-196.]
[27] 水利部长江水利委员会. 水布垭水利枢纽综合设计报告[R]. 武汉:水利部长江水利居委会,1986:4-5.
[28] GOLDENFUM J. Greenhouse Gas Measuremen Guides for Freshwater Reservoirs:Derived from the UNESCO/IHA Research Project on the GHG Status of Frewater Reservoirs[M]. Sutton, London, UK:International Hydropower Associstion, July, 2010.
[29] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境出版社, 2002.
[30] 宋金明, 徐永福, 胡维平, 等. 中国近海与湖泊碳的生物地球化学[M]. 北京:科学出版社, 2008.[SONG J M, XU Y F, HU W P, et al. Biogeochemistry of Carbon in China Seas and Lakes[M]. Beijing:Science Press, 2008.]
[31] BARROS N, COLE J J, TRANVIK L J, et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude[J]. Nature Geoscience, 2011, 4(9):593-596.
[32] CHEN H, WU Y Y, YUAN X Z, et al. Methane emissions from newly created marshes in the drawdown area of the Three Gorges Reservoir[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D18):D18301.
[33] WANG F S, WANG B L, LIU C Q, et al. Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River, southwest of China[J]. Atmospheric Environment, 2011, 45(23):3827-3834.
[34] ZHAO Y, WU B F, ZENG Y. Spatial and temporal aspects of greenhouse gas emissions from Three Gorges Reservoir, China[J]. Biogeosciences Discussions, 2012, 9(10):14503-14535.
[35] YANG L, LU F, WANG X K, et al. Surface methane emissions from different land use types during various water levels in three major drawdown areas of the Three Gorges Reservoir[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D10):D10109.
[36] PARK H K, BYEON M S, SHIN Y N, et al. Sources and spatial and temporal characteristics of organic carbon in two large reservoirs with contrasting hydrologic characteristics[J]. Water Resources Research, 2009, 45(11):W11418.
[37] PIERSON-WICKMANN A C, GRUAU G, JARDÉ E, et al. Development of a combined isotopic and mass-balance approach to determine dissolved organic carbon sources in eutrophic reservoirs[J]. Chemosphere, 2011, 83(3):356-366.
[1] 卢燕宇, 王胜, 田红, 邓汗青, 何冬燕. 近50年安徽省气候生产潜力演变及粮食安全气候承载力评估[J]. 长江流域资源与环境, 2017, 26(03): 428-435.
[2] 魏显虎|杜耘,蔡述明,薛怀平,刘韬,. 清江流域1995~2000年土壤侵蚀时空变化[J]. 长江流域资源与环境, 2006, 15(Sup1): 120-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[4] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[5] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[6] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[7] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[8] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[9] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .