长江流域资源与环境 >> 2018, Vol. 27 >> Issue (06): 1307-.doi: 10.11870/cjlyzyyhj201806014

• 生态环境 • 上一篇    下一篇

 基于GF-1号遥感影像的武汉市及周边湖泊综合营养状态指数反演

周亚东1,2,何报寅1,寇杰锋1,2,粱胜文3,胡世祥3,胡   柯3   

  1. (1.中国科学院测量与地球物理研究所,湖北 武汉 430077;2.中国科学院大学,北京 100049;3.武汉市环境监测中心,湖北 武汉 430062)
  • 出版日期:2018-06-20

Inversion of Lake Trophic Level Index in Wuhan Area Based on GF-1 Images

#br# ZHOU Ya-dong1,2, HE Bao-yin1, KOU Jie-feng1,2, LIANG Sheng-wen3, HU Shi-xiang3, HU Ke3   


  1. (1. Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China;2. University of the Chinese Academy of Sciences,Beijing 100049, China; 3.Wuhan Environmental Monitoring Center,Wuhan 430062,China)
  • Online:2018-06-20

摘要:  湖泊水体富营养化的监测评价是湖泊水资源管理和水环境保护的基础性工作。基于GF-1号WFV遥感影像和综合营养状态指数法,通过82个站点实测数据建立多元线性回归和RBF神经网络模型,对武汉市及其周边地区主要湖泊综合营养状态指数进行了反演。反演的结果显示,武汉市及周边大部分湖泊水域处于轻度富营养和中营养状态,局部湖区为中度富营养状态。验证结果表明:GF-1号WFV多光谱数据用于监测大面积湖群水质变化是可行的;两种模型都可以建立实测数据与遥感信息的函数关系,根据函数可以反演湖泊水质综合营养状态指数,进而实现大面积湖泊水质动态监测;而RBF神经网络模型预测的R2为0.742 3,均方根误差为3.72,其反演精度更高,更适合于监测内陆湖泊水质变化。
关键词: 武汉市;GF-1号;湖泊水质反演;营养状态指数;RBF神经网络

Abstract: Monitoring and assessing eutrophication of lake water are basic work, which is important for water resource management and water environment protection. Based on GF-1 WFV images,82 measured data and the method of trophic level index, we built the multiple linear regression model and RBF neural network model, and we got the trophic level index of lakes in Wuhan and its surrounding areas. The inversion result shows that most lakes are in a state of light eutropher and mesotropher, and the partial in middle eutropher. The results show that GF-1 WFV multispectral images are feasible in monitoring the water quality of numerous lakes; we can retrieve the trophic level index and dynamically monitor water quality with functions established by measured data and remote sensing information; the RBF neural network model has a R2 of 0.742 3 and a root mean square error of 3.72. The inversion accuracy of RBF is higher, which is more suitable for monitoring the change of water quality in inland lakes.
Key words:Wuhan; the inversion of lake water quality; trophic level index; GF-1; RBF neural network

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!