长江流域资源与环境 >> 2021, Vol. 30 >> Issue (12): 2938-2948.doi: 10.11870/cjlyzyyhj202112013

• 生态环境 • 上一篇    下一篇

基于氢氧稳定同位素组成解析庐江矾矿酸性废水来源

朱红艳1,任佳1,杨强2,周蓓蓓1*,贾彦武2,吕佼佼2,周晓平2,聂卫波1   

  1. (1.西安理工大学西北旱区生态水利工程国家重点实验室,陕西 西安 710048;
    2.中国电建西北勘测设计研究院有限公司城乡发展与环保工程院,陕西 西安 710065)
  • 出版日期:2021-12-20 发布日期:2022-01-07

Sources Analysis of Acid Drainage From Lujiang Alunite Mine Based on Stable Isotope Composition of Hydrogen and Oxygen

ZHU Hong-yan1,REN Jia1,YANG Qiang2,ZHOU Bei-bei1,JIA Yan-wu2, LV Jiao-jiao2, ZHOU xiao-ping2,NIE Wei-bo1   

  1. (1.Xi'an University of Technology,State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area,Xi’an 710048, China;2.Northwest engineering corporation limited, Academy of Urban and Rural Development and Environmental 
    Protection Engineering,Xi’an 710065, China)
  • Online:2021-12-20 Published:2022-01-07

摘要:  庐江矾矿区受采矿影响,酸性废水严重污染地表水体、矿区土壤,但由于矿区开发历史悠久,采空、塌陷严重,其酸性废水来源不明确,严重影响矿区污染治理进程。采集矾矿区裂隙水、井水、沟道水、沉陷区积水、雨水、矿硐水等不同水体水样,开展其氢氧稳定同位素特征分析,采用直接对比法和MixSIAR模型,明确了矿硐水的来源及不同水体的贡献比例,在此基础上,结合不同水体水质、矾矿石和矿渣成分的检测结果,探究矿硐酸性废水的形成机理。结果表明:(1)矾矿沉陷区积水主要来源于大气降水,但受蒸发影响较大,相对富集重氢、氧同位素,与地下水氢氧稳定同位素组成相差较大;(2)降水会补给浅层地下水,但有一定的滞后效应;(3)降水和裂隙水可能补给沟道水,沟道水也可能补给浅层地下水;(4)井水、裂隙水、沟道水、雨水可能是矿硐水的主要补给水源;(5)不同水体对矿硐水的贡献比例,第一次采样的结果从大到小依次为:雨水39.1%、地下水36.4%、沟道水24.5%,第二次采样的结果从大到小依次为:地下水56.6%、沟道水30.9%、雨水12.5%,两次采样雨水对矿硐水的贡献比例差别较大可能由于降水量不同;(6)明矾水解是矿硐酸性废水的主要成因机理,黄铁矿氧化也会是产生酸性矿山废水的原因之一,平硐以上的采空区提供了形成酸性水的良好条件——充足的氧气和水。研究结果为酸性矿山废水污染的控制、降低矿区土壤相关风险和矿区生态恢复提供科学依据。

Abstract: Under the influence of mining, surface water and soil were seriously polluted by the acid mine drainage of Lujiang alunite mine. However, due to the long history of mining development, the mining and collapse of the mining area are serious, and sources of the acidic drainage is not clear, which seriously affects the process of pollution control in mining area. Water samples from different water bodies of alunite mine were collected, such as fissure water, well water, channel water, subsidence area water, rain water, adit water and so on, analysis of characteristics of hydrogen and oxygen stable isotopes was carried out, the direct comparison method and MixSIAR model were adopted to explicit sources of the adit water and the contribution ratio of different water to it, on this basis, combined with testing results of different water quality,alum ore and slag composition, the formation mechanism of acidic drainage in adit was explored. The results show that water in subsidence areas mainly comes from rainfall, but it is greatly affected by evaporation, and it is relatively rich in heavy isotopes, which is quite different from the stable isotopic composition of hydrogen and oxygen of groundwater. The precipitation can recharge the shallow groundwater, but it has a certain hysteresis effect. The precipitation and fissure water may feed the channel water and the channel water may also feed the shallow groundwater. Well water, fissure water, channel water and rainwater may be the main replenishment sources of mine adit water. For the contribution ratio of different water bodies to the adit water, the results of the first sampling in descending order are rainwater 39.1%, groundwater 36.4% and channel water 24.5%.The results of the second sampling in descending order are underground water 56.6%, channel water 30.9%, and rainwater 12.5%. The contribution ratios of rainwater in the two sampling to the mine adit water are quite different, which may be due to the different precipitation. Alum hydrolysis is the main formation mechanism of acidic mine waste water, and pyrite oxidation is also one of the reasons for forming acidic mine waste water. The goaf above the adit provides good conditions for the formation of acidic drainage —plenty of oxygen and water. Those results should provide scientific reference for acid mine drainage pollution control, soil related risks reduction and ecological restoration.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张鑫, 陈志刚. 经济增长激励、官员异质性与城市工业污染:以长三角地区为例[J]. 长江流域资源与环境, 2018, 27(07): 1314 .
[2] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[3] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[4] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[5] 刘钢, 刘坤琳, 汪玮茜, 赵爽. 水质感知视角下水库移民满意度分析——基于有序逻辑回归的实证研究[J]. 长江流域资源与环境, 2018, 27(07): 1355 .
[6] 戢晓峰, 刘丁硕. 基于3D理论与SEM的县域交通可达性与空间贫困的耦合机制[J]. 长江流域资源与环境, 2018, 27(07): 1360 .
[7] 张大鹏, 曹卫东, 姚兆钊, 岳洋, 任亚文. 上海大都市区物流企业区位分布特征及其演化[J]. 长江流域资源与环境, 2018, 27(07): 1365 .
[8] 佘颖, 刘耀彬. 国内外绿色发展制度演化的历史脉络及启示[J]. 长江流域资源与环境, 2018, 27(07): 1370 .
[9] 侯雯嘉, 陈长青, 乔辉, 孙新素, 周曙东. 1980~2009年长江下游地区油菜冻害时空特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1375 .
[10] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .