长江流域资源与环境 >> 2022, Vol. 31 >> Issue (3): 526-536.doi: 10.11870/cjlyzyyhj202203004

• 区域可持续发展 • 上一篇    下一篇

长三角人工智能产业空间格局及影响因素

叶  琴1,徐晓磊1,胡森林2*,曾  刚2,陆嘉铃1   

  1. (1. 上海师范大学环境与地理科学学院,上海 200234;2. 华东师范大学中国现代城市研究中心,上海 200062)
  • 出版日期:2022-03-20 发布日期:2022-04-07

Pattern and Impact Factors of Artificial Intelligence Industries’ Distribution in Yangtze River Delta

YE Qin1, XU Xiao-lei1,HU Sen-lin2, ZENG Gang2,LU Jia-ling1   

  1. (1. School of Environmental and Geographical Sciences, Shanghai Normal University, 200234 Shanghai, China; 2. The Center for Modern Chinese City Studies, East China Normal University, 200062 Shanghai, China)
  • Online:2022-03-20 Published:2022-04-07

摘要: 基于从天眼查筛选的长三角人工智能企业数据,采用核密度法、空间自相关分析、地理探测器等方法,研究2015~2020年长三角41个城市的人工智能产业空间格局及影响因素。研究发现:(1)城市群层面,长三角人工智能产业呈多中心集聚发展态势,上海、杭州、苏州、南京、合肥五大集聚中心带动产业整体向沪宁合杭甬发展带集聚;从产业基础层、技术层到应用层,随着产业链环节技术门槛的降低,集聚水平提高,集聚中心数量增多,集聚规模扩大。(2)城市层面,上海和苏州呈现出“多中心”集聚特征,而杭州、南京、合肥为“单中心”的集聚模式;应用层集聚程度高于技术层和基础层,并向人口最密集和数据生产最多的中心城区集聚,基础层和技术层则相对更多布局在产业园区。(3)城市人工智能技术关联产业的基础(计算机、软件等)、科技人员数量、创新能力是影响长三角人工智能产业空间格局的核心因素,但基础层、技术层和应用层的影响因素存在一定的差异性。

Abstract: Based on the data of artificial intelligence enterprises in the Yangtze River Delta selected from the TIANYANCHA website, this paper studied the pattern and impact factors of the artificial intelligence industries’ distribution from 2015 to 2020 in the Yangtze River Delta by adopting the methods of kernel density estimation, spatial autocorrelation, and geographic detectors. The results are as follows: (1)The artificial intelligence industry in the Yangtze River Delta located in a polycentric and was assembling. Driving by the five agglomeration centers that was Shanghai, Hangzhou, Suzhou, Nanjing, and Hefei, the whole industry was concentrating along the Shanghai-Nanjing-Hefei-Hangzhou-Ningbo development zone. From the basic layer, the technical layer to the application layer with the decline of the technical threshold, the number of agglomeration centers increased and the scale of agglomeration expanded. (2)At the city level, Shanghai and Suzhou show the characteristics of polycentric agglomeration, while Hangzhou, Nanjing and Hefei are monocentric agglomeration; Then the application layer was more concentrated than the basic layer and technical layer and concentrated in the Central of the city, while basic layer and technical layer tend to located in the industrial parks. (3)The foundation of technology related industries(the number of computer and software), the number of scientific and technological personnel, and the innovation ability are the core factors influencing the spatial pattern of the artificial intelligence industry in the Yangtze River Delta, but there are some differences in the influencing factors of the basic layer, technology layer and application layer.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁博, 郭梦京, 周孝德, 郑兴. 气候变化及人类活动对河流溶解性有机质(DOM)影响的研究进展[J]. 长江流域资源与环境, 2018, 27(07): 1440 .
[2] 张路路, 郑新奇, 蔡玉梅.  基于投影寻踪模型的湖南省土地多功能时空演变分析[J]. 长江流域资源与环境, 2018, 27(08): 1754 .
[3] 廖炜, 李璐, 杨伟, 吴宜进. 城镇化过程中的流域面源污染时空变化[J]. 长江流域资源与环境, 2018, 27(08): 1776 .
[4] 奚世军 安裕伦 李阳兵 蔡沛伶 李瑞 龙立美 陈啟英. 基于景观格局的喀斯特山区流域生态风险评估 ——以贵州省乌江流域为例[J]. 长江流域资源与环境, , (): 0 .
[5] 张亚飞 廖和平 李义龙. 基于反规划与FLUS模型的城市增长边界划定研究——以重庆市渝北区为例[J]. 长江流域资源与环境, , (): 0 .
[6] 王先甲 秦颖 杨文俊 袁睢秋. 湖库泥沙资源化多目标优化配置研究综述[J]. 长江流域资源与环境, , (): 0 .
[7] 秦立 吴起鑫. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, , (): 0 .
[8] 刘晋高, 诸葛亦斯, 刘德富, 张佳磊, 马骏, 余晓.  

防控三峡水库支流水华的生态约束型优化调度 [J]. 长江流域资源与环境, 2018, 27(10): 2379 .

[9] 谢五三, 吴 蓉, 丁小俊. 基于FloodArea模型的城市内涝灾害风险评估与预警[J]. 长江流域资源与环境, 2018, 27(12): 2848 -2855 .
[10] 刘晓阳 黄晓东 丁志伟. 长江经济带县域信息化水平的空间差异研究[J]. 长江流域资源与环境, , (): 0 .