长江流域资源与环境 >> 2022, Vol. 31 >> Issue (7): 1523-1533.doi: 10.11870/cjlyzyyhj202207010

• 自然资源 • 上一篇    下一篇

长江上游流域生长季植被覆盖度时空变化特征及其成因

杨少康1,2,3,刘  冀1,2,3*,魏  榕1,2,3,董晓华1,2,3,林青霞1,章程焱1,2,3   

  1. (1.三峡大学水利与环境学院,湖北 宜昌 443002; 2.三峡库区生态环境教育部工程研究中心,湖北 宜昌 443002;3.水资源安全保障湖北省协同创新中心,湖北 武汉 430072)
  • 出版日期:2022-07-20 发布日期:2022-08-22

Spatio-temporal Variation Characteristics and Causes of Vegetation Coverage in Growing Season in the Upper Reaches of the Yangtze River Basin

YANG Shao-kang1,2,3, LIU Ji1,2,3, WEI Rong1,2,3, DONG Xiao-hua1,2,3,LIN Qing-xia1,ZHANG Cheng-yan1,2,3   

  1. (1.College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002,China;2.Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Yichang 443002, China;3.Hubei Collaborative Innovation Center for Water Resources Security, Wuhan 430072, China)
  • Online:2022-07-20 Published:2022-08-22

摘要: 植被覆盖度是衡量区域植被生长状态及描述生态环境质量的重要指标,基于MODIS MOD13A3遥感数据和气象数据,采用趋势分析法分析长江上游流域生长季植被覆盖度时空变化特征,进一步采用偏相关分析、残差分析法揭示植被覆盖度变化对气候和人类活动的响应机制。结果表明:(1)2000~2019年长江上游流域生长季植被覆盖度呈显著上升趋势(P<0.05),增长速率为1.3×10-3/a,多年平均植被覆盖度为0.64,呈东部向西北部逐渐下降趋势;(2)植被覆盖度空间分布异质性显著,61.5%的区域呈改善趋势,主要为分布在嘉陵江流域及乌江流域的栽培植物,退化区域占38.5%,主要为分布在金沙江流域及岷江上游流域的针叶林、草甸及灌丛;(3)植被覆盖度以海拔3.5 km为界,呈先上升后下降态势,海拔低于3.5 km,植被覆盖度变化随海拔变化梯度较小,海拔高于3.5 km,植被覆盖度随海拔变化梯度较大;(4)以降水为植被覆盖度变化主要影响因子的像元面积占57.5%,分布多集中在嘉陵江流域及乌江流域,以气温为主要影响因子分布较分散;(5)2000~2019年长江上游流域人类活动对植被覆盖度变化影响力为正值区域高于负值区域,表明人类活动促进了长江上游流域植被生长。

Abstract: Vegetation coverage is an important indicator to measure the growth status of regional vegetation and describe the quality of the ecological environment. Based on MODIS MOD13A3 remote sensing data and meteorological data, this paper uses trend analysis to analyze the spatio-temporal characteristics of vegetation coverage in the growth season in the upper Yangtze River basin, and further uses partial correlation analysis the residual analysis method reveals the response mechanism of vegetation coverage changes to climate and human activities. The results show that: (1) The vegetation coverage in the growing season of the upper Yangtze River basin from 2000 to 2019 showed a significant upward trend (P<0.05), the growth rate was 1.3×10-3/a, and the multi-year average vegetation coverage was 0.64, showing an eastward trend. The northwestern part is gradually decreasing; (2) The spatial distribution of vegetation coverage has significant heterogeneity, with 61.5% of the area showing an improvement trend, mainly for cultivated plants distributed in the Jialing River Basin and Wujiang River Basin, and the degraded area accounts for 38.5%, mainly distributed in Coniferous forests, meadows and shrubs in the Jinsha River Basin and the upper reaches of the Minjiang River; (3) The vegetation coverage is bounded by an altitude of 3.5 km, which rises first and then declines. The altitude is lower than 3.5 km, and the vegetation coverage varies with altitude the change gradient is small, the altitude is higher than 3.5 km, and the vegetation coverage varies greatly with altitude; (4) The area of pixels whose main influencing factor of vegetation coverage is precipitation accounts for 57.5%, and the distribution is mostly concentrated in the Jialing River Basin and Wujiang River Basin, with temperature as the main influencing factor, the distribution is relatively scattered; (5) From 2000 to 2019, the influence of human activities in the upper reaches of the Yangtze River on the change of vegetation coverage was higher in areas with positive values than in areas with negative values, indicating that human activities promoted the growth of vegetation in the upper reaches of the Yangtze River.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 璐, 董 捷, 张俊峰. 长江经济带城市土地利用效率地区差异及形成机理[J]. 长江流域资源与环境, 2018, 27(08): 1666 .
[2] 钟业喜, 傅 钰, 朱治州, 王晓静.  基于母子企业联系的上市公司网络结构研究——以长江中游城市群为例[J]. 长江流域资源与环境, 2018, 27(08): 1725 .
[3] 陆砚池 方世明. 均衡和效率双重视角下武汉市主城区公园绿地空间布局优化研究[J]. 长江流域资源与环境, , (): 0 .
[4] 危小建 陈竹安 张蕾 江平 吴芳. 引入城市扩张干扰效应的生态服务价值化方法改进[J]. 长江流域资源与环境, , (): 0 .
[5] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[6] 张小峰, 闫昊晨, 岳遥, 卢雅婷.  

50年金沙江各区段年径流量变化及分析 [J]. 长江流域资源与环境, 2018, 27(10): 2283 -2292 .

[7] 李晟铭 刘吉平 宋开山. 基于Landsat影像巢湖蓝藻水华暴发时空变化特征其驱动因素分析[J]. 长江流域资源与环境, , (): 0 .
[8] 秦立, 付宇文, 吴起鑫, 安艳玲, 刘瑞禄, 吕婕梅, 吴振宇. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, 2019, 28(01): 175 -183 .
[9] 程谅, 郭忠录, 秦嘉惠. 长期施肥对小麦—玉米轮作红壤抗蚀性的影响[J]. 长江流域资源与环境, 2019, 28(01): 212 -221 .
[10] 赵季伟 李占海 徐圣 张二凤 程和琴. 长江口北港上段河道枯季悬沙浓度垂向分布特征研究[J]. 长江流域资源与环境, , (): 0 .