长江流域资源与环境 >> 2022, Vol. 31 >> Issue (11): 2430-2448.doi: 10.11870/cjlyzyyhj202211009

• 自然资源 • 上一篇    下一篇

长江流域国家级自然保护地空间分布特征及其影响因素

杨  阳1,唐晓岚1,2*   

  1. (1.南京林业大学风景园林学院,江苏 南京 210037;2.南京林业大学中国特色生态文明建设与林业发展研究院,江苏 南京 210037)
  • 出版日期:2022-11-20 发布日期:2022-12-26

Spatial Distribution Characteristics and Influencing Factors of National Nature Protected Areas in Yangtze Basin

YANG Yang1, TANG Xiao-lan1,2   

  1. (1.College of landscape architecture, Nanjing Forestry University, Nanjing 210037, China;2.Academy of Chinese Ecological Progress and Forestry Studies, Nanjing Forestry University, Nanjing 210037, China)
  • Online:2022-11-20 Published:2022-12-26

摘要: 长江流域已形成较为成熟的自然保护地体系,揭示各类自然保护地空间分布特征及其影响因素能为流域自然保护地的申报、管理、保护和可持续发展等方面提供科学依据。以长江流域5类数量众多的国家级自然保护地为研究对象,对数量、面积、地理集中度及核密度的空间分布格局展开分析,并对影响因子作深入探讨。结果表明:(1)长江流域国家级自然保护地在湖南、四川、江西、湖北、贵州数量较多,分别有152、141、125、98、73处。总面积上青海、四川、湖南、湖北、江西占有优势,分别达 1 974.16、389.39、92.41、73.91、64.35万 km2。(2)国家级自然保护区(7.10)、国家级风景名胜区(7.16)、国家级水利风景区(7.84)地理集中度指数均在湖南最高,国家级森林公园与国家级地质公园分别在江西(7.24)、贵州(4.01)地理集中度指数最高。(3)多距离空间聚类分析方法确定的长江流域五类国家级自然保护地,核密度分析的带宽值分别为20、20、20、25、25 km。国家级自然保护区空间分布呈现出“一横、两纵式”的格局,国家级风景名胜区呈现出“下游集聚、中游两组团、上游单热点”的格局,国家级森林公园呈现出“下游扎堆、中游三组团、上游单核心”的格局,国家级水利风景区呈现出“下游单核心、中游两组团、上游两热点”的格局,国家级地质公园呈现出“下游单组团、中上游一横两纵”的格局。(4)各类国家级自然保护地空间分布受到地形、植被、水资源、生物多样性、人口、土地、资金、交通、政策多种不同因素的综合影响。

Abstract: A relatively mature system of nature protected areas has been formed in Yangtze Basin. Revealing spatial distribution characteristics of nature protected areas and influencing factors can provide a scientific basis for the declaration, management, protection and sustainable development of nature protected areas in the watershed. Taking five types of national nature protected areas with a large number of Yangtze Basin as the research object, the spatial distribution differences of their quantity, area, geographic concentration and kernel density were analyzed, and the impact factors were discussed in depth. The results showed that: (1) There are a large number of national nature protected areas in Hunan, Sichuan, Jiangxi, Hubei, and Guizhou, with 152, 141, 125, 98, and 73 respectively. The total area of national nature protected areas of Qinghai, Sichuan, Hunan, Hubei, and Jiangxi has advantages, reaching 19 741 617, 3 893 913, 924 177, 739 134, and 643 504 km2 respectively. (2) National nature reserves (7.10), national scenic spots (7.16), and national water conservancy scenic areas (7.84) have the highest geographic concentration index in Hunan. National forest parks and national geological parks have the highest geographic concentration index in Jiangxi (7.24) and Guizhou (4.01) respectively. (3) The bandwidth value of the kernel density analysis for national nature reserves, national scenic spots, national forest parks, national water conservancy scenic spots, and national geological parks determined by the Ripley’s K method in Yangtze Basin are 20, 20, 20, 20, 25 km respectively. The spatial distribution of national nature reserves presents a pattern of one horizontal and two vertical strips. The spatial distribution of national scenic spots presents a pattern of one cluster in the lower reaches, two groups in the middle reaches, and a single hot core in the upper reaches. The spatial distribution of national forest parks presents a pattern of one cluster in the lower reaches, three clusters in the middle reaches, and a single core in the upper reaches. The spatial distribution of national water conservancy scenic spots presents a pattern of a single core in the lower reaches, two clusters in the middle reaches, and two cores in the upper reaches. The spatial distribution of national geological parks presents a pattern of one cluster in the lower reaches and one horizontal and two vertical strips in the middle and upper reaches. (4) The spatial distribution of various types of national nature protected areas is comprehensively affected by many different factors such as topography, vegetation, water resources, biodiversity, population, land, capital, transportation, and policy.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[2] 王 磊, 李成丽.  

我国中部地区城市群多中心结构的增长效应 [J]. 长江流域资源与环境, 2018, 27(10): 2231 -2240 .

[3] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481 -2495 .
[4] 康婷婷, 徐 欢, 张春华, 胡召玲. 区域尺度农田最大光能利用率参数估算及时空变化分析[J]. 长江流域资源与环境, 2018, 27(12): 2766 -2774 .
[5] 胡兴坤, 高 雷, 杨 浩, 刘绍平, 陈大庆, 段辛斌 . 长江中游黄石江段鱼类早期资源现状[J]. 长江流域资源与环境, 2019, 28(01): 60 -67 .
[6] 胡晓, 余英俊, 魏永才, 洪亮, 张永年, 石小涛, 吴睿. 基于过鱼效果评估的涵洞鱼道堰式挡板性能研究与分析[J]. 长江流域资源与环境, 2019, 28(01): 134 -143 .
[7] 秦立, 付宇文, 吴起鑫, 安艳玲, 刘瑞禄, 吕婕梅, 吴振宇. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, 2019, 28(01): 175 -183 .
[8] 陈 炳, 曾 刚, 曹贤忠, 宓泽锋. 长三角城市群生态文明建设与城市化耦合协调发展研究[J]. 长江流域资源与环境, 2019, 28(03): 530 -541 .
[9] 李佳佳 贺新光 卢希安. 长江流域月降水的EEMD多时间尺度遥相关分析[J]. 长江流域资源与环境, , (): 0 .
[10] 李科, 张萌, 刘雄军, 杨丽敏, 薛涛涛, 欧阳珊, 吴小平. 陡水湖流域大型底栖动物群落结构及其环境影响因素[J]. 长江流域资源与环境, 2019, 28(04): 939 -949 .