长江流域资源与环境 >> 2022, Vol. 31 >> Issue (11): 2526-2535.doi: 10.11870/cjlyzyyhj202211017

• 生态环境 • 上一篇    下一篇

典型山地城市河流沉积物重金属生态风险评价及来源解析

王超1,贾伯阳2,黄燚2,何文战2*,牛玉龙1,卢晶莹1,江敏敏1,何方怡3
  

  1. (1.中国长江三峡集团有限公司博士后科研工作站,北京 100038;2.长江生态环保集团有限公司,湖北 武汉 430062;3. Baylor University, One Bear Place Waco, TX 76798, USA)
  • 出版日期:2022-11-20 发布日期:2022-12-26

Ecological Risk Assessment and Source Analysis of Heavy Metals in River Sediments of a Typical Mountainous City

WANG Chao1, JIA Bo-yang2, HUANG Yi2, HE Wen-zhan2, NIU Yu-long 1,  LU Jing-ying1, JIANG Min-min1, HE Fang-yi3   

  1.  (1. Post-Doctoral Scientific Research Workstation, China Three Gorges Corporation, Beijing 100038, China; 
    2. Yangtze Ecology and Environment Co., Ltd., Wuhan 430062, China; 3. Baylor University, One Bear Place Waco, TX 76798, USA)
  • Online:2022-11-20 Published:2022-12-26

摘要:  富集在沉积物中的重金属是长期影响城市河流地表水生态的潜在威胁。通过采集位于重庆主城区的典型山地城市河流——清水溪干流河底沉积物,监测各点位沉积物样品中的重金属含量以及附近地表水环境指标,并利用多种评价方法和统计学手段来评判清水溪干流沉积物重金属的生态风险和来源解析。结果表明,清水溪干流沉积物中As、Cd、Cr、Cu、Hg、Ni、Pb和Zn均值含量分别为7.55±8.25、0.238±0.056、86.43±5.14、78.21±18.22、2.49±2.00、33.86±5.29、42.99±9.21和198.71±43.55 mg·kg-1。地累积指数(Igeo)评价体系中,Hg达到了重度污染水平,Cu、Zn、Cd和Pb也有轻度污染。大部分点位沉积物重金属含量超过现行的农用地土壤污染风险管控标准,建议清淤淤泥需谨慎用于农用地。沉积物潜在生态风险指数(RI)均值为1 984.54±1 515.92,Hg对RI的贡献度达到了90.78%,清水溪干流沉积物存在着极大的生态风险。重金属外源输入的主要区域集中于河流源头,加之上游地表水较高的pH,共同导致重金属(除As和Ni外)含量从上游至下游逐渐减小的趋势。由于山地河流源头较高的比降,在源头输入的外源污染对干流中上游沉积物中的重金属含量均造成一定影响。通过主成分分析和聚类分析表明,沉积物中Cr、Cu、Hg、Pb和Zn主要源于源头工业点源污染,并存在3种细分类型,应源于不同的行业类型;As和Ni主要源于污水处理站/城市面源污染;上述两种来源均对Cd有显著贡献。


Abstract: The heavy metals accumulated in the sediments is a potential threat to the urban river ecology. In August 2019, sediments were collected in Qingshui River, located in the main urban area of Chongqing. The content of heavy metals in the samples and the environmental indicators of adjacent surface water were monitored. The ecological risks and sources of heavy metals were evaluated by various statistical methods. The results showed that the average value of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in the sediments of the main stream of Qingshui River were 7.55±8.25, 0.238±0.056, 86.43±5.14, 78.21±18.22, 2.49±2.00, 33.86±5.29, 42.99±9.21 and 198.71±43.55 mg·kg-1, respectively. According to the result of Geoaccumulation Index (Igeo) evaluation system, Hg reached the Severe Pollution Level, while Cu, Zn, Cd and Pb were at Slightly Polluted Level. The heavy metal content of sediments at most sites exceeded the current agricultural land soil pollution risk control standards, which indicated the dredged silt should be carefully used in agricultural land. The mean value of sediment Potential Ecological Risk Index (RI) was 1 984.54±1 515.92 and Hg contributed 90.78% for it, showing a great ecological risk of the sediments in Qingshui River. The exogenous sources of the heavy metals could be apportioned to the headwater and higher pH of the upstream surface water., which resulting in a gradual decrease trend of heavy metals (except As and Ni) from upstream to downstream. Due to the high gradient of mountainous rivers, the exogenous inputs of heavy metals at the headwater are able to affect the content of heavy metals in the sediments covering the entire upper and middle reaches. Principal component analysis and cluster analysis showed that Cr, Cu, Hg, Pb, and Zn in the sediments mainly originated from industrial point sources at the headwater, and there were three types of subdivisions derived from different types of industries. As and Ni mainly originated from sewage treatment station/urban non-point sources. Cd accumulation in the sediments were both significantly affected by the mentioned two sources.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[2] 王 磊, 李成丽.  

我国中部地区城市群多中心结构的增长效应 [J]. 长江流域资源与环境, 2018, 27(10): 2231 -2240 .

[3] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481 -2495 .
[4] 康婷婷, 徐 欢, 张春华, 胡召玲. 区域尺度农田最大光能利用率参数估算及时空变化分析[J]. 长江流域资源与环境, 2018, 27(12): 2766 -2774 .
[5] 刘帅 何 青 谢卫明 郭磊城 沈芳. 近15年来长江口控制站徐六泾悬沙变化特征研究[J]. 长江流域资源与环境, , (): 0 .
[6] 胡兴坤, 高 雷, 杨 浩, 刘绍平, 陈大庆, 段辛斌 . 长江中游黄石江段鱼类早期资源现状[J]. 长江流域资源与环境, 2019, 28(01): 60 -67 .
[7] 胡晓, 余英俊, 魏永才, 洪亮, 张永年, 石小涛, 吴睿. 基于过鱼效果评估的涵洞鱼道堰式挡板性能研究与分析[J]. 长江流域资源与环境, 2019, 28(01): 134 -143 .
[8] 秦立, 付宇文, 吴起鑫, 安艳玲, 刘瑞禄, 吕婕梅, 吴振宇. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, 2019, 28(01): 175 -183 .
[9] 李佳佳 贺新光 卢希安. 长江流域月降水的EEMD多时间尺度遥相关分析[J]. 长江流域资源与环境, , (): 0 .
[10] 黄玥, 黄志霖, 肖文发, 曾立雄, 马良. 基于Mann-Kendall法的三峡库区长江干流入出库断面水质变化趋势分析[J]. 长江流域资源与环境, 2019, 28(04): 950 -961 .