长江流域资源与环境 >> 2023, Vol. 32 >> Issue (4): 764-773.doi: 10.11870/cjlyzyyhj202304008

• 自然资源 • 上一篇    下一篇

七姊妹山泥炭藓湿地大泥炭藓(Sphagnum palustre L.)群落分布格局及其驱动机制

李亭亭1,2#,任  帅1,2#,莫家勇3,刘少林1,2,祝文龙1,2,刘昌勇4,汪正祥1,2*   

  1. (1.区域开发与环境响应湖北省重点实验室,湖北 武汉 430062;2.湖北大学资源环境学院,湖北 武汉 430062;3.神农架国家公园管理局,湖北 神农架林区 442421;4.七姊妹山国家级自然保护区管理局,湖北 宣恩 516353)
  • 出版日期:2023-04-20 发布日期:2023-04-27

Distribution Patterns of Sphagnum Palustre L. Community and Its Environmental Driving Mechanism in Sphagnum Wetland of Qizimei Mountain

LI Ting-ting1,2, REN Shuai1,2,MO Jia-yong3, LIU Shao-lin1,2, ZHU Wen-long4, WANG Zheng-xiang1,2   

  1. (1. Hubei Key Laboratory of Regional Development and Environmental Response, Wuhan 430062,China; 2. Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062,China; 3. Shengnongjia National Park Administration, Shennongjia 442421,China; 4. Qizimei Mountain National Nature Reserve Administration, Xuanen 516353,China)
  • Online:2023-04-20 Published:2023-04-27

摘要: 为探究七姊妹山泥炭藓湿地大泥炭藓(Sphagnum palustre L.)群落的分布格局及其驱动机制,进而为亚热带山地泥炭藓湿地保护、恢复和开发利用提供科学的理论依据,于2021年6月,对该湿地泥炭藓斑块设置样方,使用标准样方法进行植被、环境调查,同时采集样品进行测量分析。运用系统聚类法进行群落的数量分类,随后使用单因素方差分析、多元回归分析及Pearson相关性分析检验各群丛间环境因子以及大泥炭藓生长、生理指标的差异及其相关性,明确影响大泥炭藓生长的主要环境因子及内在机制。结果显示:(1)37个调查样方可分为4个群丛类型,即:Ⅰ、蕨-大泥炭藓群丛(Ass. Pteridium aquilinum-Sphagnum palustre);Ⅱ、大理薹草-大泥炭藓群丛(Ass. Carex rubrobrunnea var. taliensis-Sphagnum palustre);Ⅲ、野灯心草+蛇床-大泥炭藓群丛(Ass. Juncus setchuensis+Cnidium monnieri-Sphagnum palustre);Ⅳ、紫萼+芒尖苔草-大泥炭藓群丛(Ass. Hosta ventricose+Lycopus cavaleriei- Sphagnum palustre)。(2)从群丛Ⅰ~群丛Ⅳ,大泥炭藓的株高、头状枝数量、盖度、生物量4项生长指标均逐渐降低。4群丛间大泥炭藓组织TN、TP、TK、TC含量、C/N、N/P、N/K、含水量9项生理指标均存在显著差异,其中组织含水量、N/K由群丛Ⅰ~Ⅳ呈逐渐上升趋势。(3)地下水位和土壤N/K是影响七姊妹山泥炭藓湿地大泥炭藓群落生长分布的主要环境因子。在长期淹水胁迫环境下,大泥炭藓组织含水量过高,抑制了大泥炭藓的光合作用,阻碍其生长。而在高N负荷下,大泥炭藓的生长受到K的限制,导致养分吸收不平衡,生长发育受阻。临近农田地表径流引起的氮输入可能是造成土壤及泥炭藓组织N/K在群丛Ⅳ中过高的重要因素。

Abstract: In order to explore the distribution pattern and its environmental driving mechanism of Sphagnum palustre L. community in Sphagnum Wetland of Qizimei Mountain, and further to provide scientific theoretical basis for the protection, restoration and utilization of Sphagnum wetland in subtropical mountain regions, field investigation and sampling for vegetation and environmental factors were conducted on June 2021 using standard sample method, followed by measurement and analysis of these samples. Subsequently, systematic clustering was used in quantitative classification of S. palustre communities; one-way ANOVA, multiple regression analysis and Pearson correlation analysis were used to test the differences in each of the environmental indicators, each of the physiological and growth indicators of S. palustre among the four clusters, as well as to test their pairwise correlation, which ultimately to elucidate the main environmental factors affecting S. palustre growth and its underlying mechanism. Results showed that: (1) A total of 37 field samples were divided into four associations: Ⅰ. Ass. Pteridium aquilinum-Sphagnum palustre; Ⅱ. Ass. Carex rubrobrunnea var. taliensis-Sphagnum palustre;Ⅲ. Ass. Juncus setchuensis+Cnidium monnieri -Sphagnum palustre; Ⅳ. Ass. Hosta ventricose+Lycopus cavaleriei-Sphagnum palustre. (2) Each of the four growth indicators (height, number of capitula, coverage, and biomass) of S. palustre showed gradual decreasing trend from Ass. I to Ass. Ⅳ. Each of the nine physiological indicators (TN, TP, TK, TC, C/N, C/P, N/P, N/K, and water content) in S. palustre tissue showed significant differences among the four associations; among which, tissue water content and N/K in S. palustre exhibited increasing trend from Ass. I to Ass. Ⅳ, with highest values occurred in Ass. Ⅳ.(3)Multiple linear regression analysis showed that water table and soil N/K were principal environmental factors affecting growth and distribution of S. palustre populations in Qizimei Mountain. In this study, excessive water content in S. palustre tissue caused by prolonged flooding stress inhibited its photosynthesis, which further impede the growth. On the other hand, high N load led to S. palustre growth was limited by K, resulting in unbalanced nutrient absorption and thereby inhibiting its growth and development. Nitrogen input from nearby farmland may be an important factor caused excessive N/K ratio in both soil and S. palustre in association Ⅳ.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[4] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[5] 苏 芳, 郑亚萍, 阚立娜, 蔡 莎. 基于CVM调查法评估城市公共绿地服务价值 ——以西部省会城市为例[J]. 长江流域资源与环境, 2018, 27(11): 2434 -2442 .
[6] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[7] 胡兴坤, 高 雷, 杨 浩, 刘绍平, 陈大庆, 段辛斌 . 长江中游黄石江段鱼类早期资源现状[J]. 长江流域资源与环境, 2019, 28(01): 60 -67 .
[8] 胡晓, 余英俊, 魏永才, 洪亮, 张永年, 石小涛, 吴睿. 基于过鱼效果评估的涵洞鱼道堰式挡板性能研究与分析[J]. 长江流域资源与环境, 2019, 28(01): 134 -143 .
[9] 秦立, 付宇文, 吴起鑫, 安艳玲, 刘瑞禄, 吕婕梅, 吴振宇. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, 2019, 28(01): 175 -183 .
[10] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .