长江流域资源与环境 >> 2023, Vol. 32 >> Issue (8): 1653-1663.doi: 10.11870/cjlyzyyhj202308009

• 自然资源 • 上一篇    下一篇

升金湖湿地水鸟越冬期季节性景观格局变化及其影响因素研究

  陈心桐1,2,3,何彬方1,2,3,霍彦峰1,2,3, 张宏群1,2,3,刘惠敏1,2,3,荀尚培1,2,3*
  

  1. (1. 安徽省气象科学研究所安徽省大气科学与卫星遥感重点实验室,安徽 合肥 230031;2. 寿县国家气候观象台,安徽 寿县 232200;3. 中国气象局淮河流域典型农田生态气象野外科学试验基地,安徽 寿县 232200)
  • 出版日期:2023-08-20 发布日期:2023-08-23

Seasonal Landscape Pattern Changes of Shengjin Lake and #br# Its Influencing Factors During the Wintering Period of Waterbirds

CHEN Xin-tong1,2,3, HE Bin-fang1,2,3, HUO Yan-feng1,2,3, ZHANG Hong-qun1,2,3,  LIU Hui-min1,2,3, XUN Shang-pei1,2,3   

  1. (1. Anhui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Anhui Institute of Meteorological Sciences, Hefei 230031, China; 2. Shouxian National Climatology Observatory, Shouxian 232200, China; 
    3. Huaihe River Basin Typical Farm Eco-meteorological Experiment Field of CMA, Shouxian 232200, China)

  • Online:2023-08-20 Published:2023-08-23

摘要: 安徽省升金湖湿地是长江中下游重要的水鸟越冬栖息地,作为浅水通江湖泊其景观格局存在明显季节性变化,并影响越冬水鸟栖息。基于2021年11月至2022年4月共9期Landsat和GF6号卫星影像以及升金湖水位和气象数据,探究升金湖水鸟越冬期季节性景观格局变化规律及其影响因素。结果表明,水位是影响湿地季节性景观格局变化的主要因素。越冬前期,升金湖水位低于11 m,湖区草滩、泥滩出露面积较大,最大值分别为51.6和14.4 km2,为水鸟提供充足的觅食地;越冬中期,随水位升高,水域面积扩大,草滩和泥滩出露面积迅速减少,最小值分别为5.6和8.5 km2;越冬末期,水位高于13 m,湖区被水域覆盖,草滩和泥滩斑块零碎分布在湖岸边缘,总面积均小于5 km2。黄湓闸泄水引发的水位变化是导致3月初草滩面积增加的主要因素。景观尺度下,水位与最大斑块指数和蔓延度指数显著正相关(p<0.05),与斑块密度和香农多样性指数显著负相关(p<0.05)。回归分析表明,气象因素中累计降水量是影响升金湖水位的主要因素(p<0.05),越冬中期和后期,降水通过影响升金湖水位进而影响湿地景观格局。保护区可依据湿地景观格局变化情况结合水鸟习性,合理调控升金湖水位,满足水鸟越冬需求。

Abstract: The Shengjin Lake in Anhui Province is an important wintering habitat for waterbirds in the middle and lower Yangtze River floodplain. As a river-connected lake, the landscape pattern manifests seasonal changes that affects the habitat suitability of waterbirds. This study investigated the change of landscape pattern of Shengjin Lake and the influencing factors, using correlation analysis and regression models, for the period of waterbird wintering season (i.e., from November 2021 to April 2022). Data of remote sensing images of Landsat and GF6, water levels, and meteorological data were collected. Results showed that the water level played a major role in controlling the landscape pattern. In the early wintering period when the water level was below 11 m, the grassland and mudflats area reached the maximum values of 51.6 km2 and 14.4 km2, respectively. A rising of water level during the middle wintering season led to an expansion of water surface area and a rapid shrinkage of grassland and mudflats coverage, reaching the minimum of 5.6 km2 and 8.5 km2, respectively. In the late wintering period when the water level was above 13 m, the core area of Shengjin Lake Reserve was dominated by water surface, and the area of grassland and mudflats was less than 5 km2,distributing near the lake bank. The human control in Huangpen Sluice caused a decline of water level in early March, and an associated increase of the coverage of grassland. The findings were further supported by a statistical analysis. At the landscape scale, the water level was significantly positively correlated with the largest patch index and contagion index (p<0.05), while negatively correlated with the patch density and Shannon’s diversity index (p<0.05). Moreover, regression results revealed that precipitation was a major factor affecting the water level of Shengjin Lake (p<0.05). In the middle and late wintering periods, precipitation affected the landscape pattern of Shengjin Lake via its influence on the lake water level. The Reserve Department may regulate the lake water level according to the seasonal changes of the landscape pattern of Shengjin Lake to provide a suitable habitat for waterbirds during the wintering season.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李建豹, 黄贤金, 孟 浩, 周 艳, 徐国良, 吴常艳. “十二五”时期中国碳排放强度累积目标完成率分析[J]. 长江流域资源与环境, 2018, 27(08): 1655 .
[2] 李嘉译, 匡鸿海, 谭 超, 王佩佩. 长江经济带城市扩张的时空特征与生态响应[J]. 长江流域资源与环境, 2018, 27(10): 2153 -2161 .
[3] 王 磊, 李成丽.  

我国中部地区城市群多中心结构的增长效应 [J]. 长江流域资源与环境, 2018, 27(10): 2231 -2240 .

[4] 唐子珺, 陈龙, 覃军, 郑翔. 武汉市一次污染过程的局地流场和边界层结构的数值模拟[J]. 长江流域资源与环境, 2018, 27(11): 2540 -2547 .
[5] 王东香, 张一鸣, 王锐诚, 赵炳炎, 张志麒, 黄咸雨, . 神农架大九湖泥炭地孔隙水溶解有机碳特征及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2568 -2577 .
[6] 王海力, 韩光中, 谢贤健. 基于DEA模型的西南地区耕地利用效率时空格局演变及影响因素分析[J]. 长江流域资源与环境, 2018, 27(12): 2784 -2795 .
[7] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1 -11 .
[8] 赵树成, 张展羽, 夏继红, 杨洁, 盛丽婷, 唐丹, 陈晓安, . 鄱阳湖滨岸土壤磷素吸附特征研究[J]. 长江流域资源与环境, 2019, 28(01): 166 -174 .
[9] 阮甜, 查芊郁, 杨茹, 高超. 全球升温1.5℃和2.0℃对长江寸滩站以上流域径流的影响[J]. 长江流域资源与环境, 2019, 28(02): 407 -415 .
[10] 牛潜, 周旭, 张继, 杨江州, 黄雪勇. 喀斯特山地城市生态系统弹性变化分析 ——以贵阳市区为例 [J]. 长江流域资源与环境, 2019, 28(03): 722 -730 .