长江流域资源与环境 >> 2023, Vol. 32 >> Issue (8): 1698-1709.doi: 10.11870/cjlyzyyhj202308013

• 生态环境 • 上一篇    下一篇

典型矿冶城市湖泊重金属污染研究——以黄石市青山湖为例

熊润光1,2,张文1,2,陈虎阳1,2,桂智凡1,2*   

  1. (1.湖北师范大学城市与环境学院,湖北 黄石 435002;2. 湖北师范大学资源枯竭城市转型发展研究中心,湖北 黄石 435002)

  • 出版日期:2023-08-20 发布日期:2023-08-23

Heavy Metal Pollution of Lakes in Typical Mining and Metallurgical Cities:A Case Study of Qingshan Lake in Huangshi City

XIONG Run-guang1,2,ZHANG Wen1,2,CHEN Hu-yang1,2, GUI Zhi-fan1,2   

  1. (1. College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002,  China; 2. Research Center for
     Resource Depletion and Urban Transformation and Development of Hubei Normal University, Huangshi 435002, China)
  • Online:2023-08-20 Published:2023-08-23

摘要: 随着社会经济的发展,城市湖泊重金属越来越受到广泛关注。选择典型的矿冶城市黄石市的湖泊—青山湖为研究对象,2020年12月采集表层沉积物和湖心柱状样,测定其部分理化性质以及铬(Cr)、铅(Pb)、镍(Ni)、铜(Cu)、锌(Zn)的含量,利用多元统计方法、空间插值法、地累积指数法、潜在生态危害指数法探讨其空间分布特征、污染状况,并对其污染来源进行解析;并利用碳球粒(Spheroidal Carbonaceous Particles, SCP)定年,结合相关历史资料,剖析青山湖重金属元素演化特征及污染历史。结果表明:(1)青山湖表层沉积物重金属元素Cr、Pb、Ni、Cu和Zn的含量分别为34.88~69.88(均值:59.17)、68.41~102.29(均值:82.48)、38.76~51.10(均值:46.26)、99.91~479.43(均值:201.16)和217.83~384.98(均值:300.18)mg/kg,分别超出背景值0.69、3.09、1.24、86.55和3.59倍。(2)Cu、Pb和Zn达到了中度及以上污染水平,各重金属元素的污染程度依次为Cu > Zn > Pb > Ni > Cr。湖区所有样点综合潜在生态危害程度均处于中等以上,单个重金属元素的潜在生态风险为Cu > Pb > Ni > Zn > Cr。(3)RDA(Redundancy analysis)分析二维排序结果表明Ni为自然源,来源于岩石的风化和土壤母质等;Cr、Pb、Cu和Zn为人为源,受交通以及该区污染企业带来的大气沉降影响。(4)球形碳定年显示青山湖1995年之后的平均沉积速率为1.25 cm/a,1950s~1995年的平均沉积速率为0.5 cm/a,1950s之前的沉积速率为0.3 cm/a。青山湖重金属含量演变可以分为4个阶段:1950s前,这段时间内黄石地区处于工农业产值低,工业水平较为落后,重金属含量低;1950s~1980s,建国后工业得到了一定的发展,但发展速度较为缓慢,重金属开始富集;1980s~2000s,黄石地区采掘、冶金等重工业不断发展,大量重金属污染物被排放进入环境中,重金属含量和污染水平快速上升;2000s后矿产资源逐渐枯竭,伴随着产业技术的升级和环境保护条例的出台,重金属污染得到了一定的控制。

Abstract: With the development of social economy, heavy metals in urban lakes have attracted more and more widespread attention. Qingshan Lake, a lake in a typical mining and metallurgy city called Huangshi, was selected as the research site. In December, 2020, surface sediments and core column samples were collected, and the physical and chemical properties and the contents of chromium (Cr), lead (Pb), nickel (Ni), copper (Cu) and zinc (Zn) were examined. The methods of multivariate statistics, spatial interpolation, ground accumulation index and potential ecological hazard index were used to explore their spatial distribution characteristics and pollution level, and the sources of pollution were also analyzed. Finally, the evolution characteristics and pollution history of heavy metals in Qingshan Lake were analyzed by using SCP (Spheroidal carbonaceous particles) dating. The results show that: (1) The contents of heavy metal elements Cr, Pb, Ni, Cu and Zn in the surface sediments of Qingshan Lake are 34.88-69.88 (mean: 59.17), 68.41-102.29 (mean: 82.48), 38.76-51.10 (mean: 46.26), 99.91-479.43 (mean: 201.16) and 217.83-384.98 (mean: 300.18) mg/kg, respectively. These magnitudes exceeded the background values by 0.69, 3.09, 1.24, 86.55 and 3.59 times, respectively. (2) that the metals of Cu, Pb and Zn reached moderate or above pollution levels, and the pollution status of each heavy metal element is Cu > Zn > Pb > Ni > Cr. The comprehensive potential ecological hazard degree of all samples is above medium, and the potential ecological risk of a single heavy metal element is Cu > Pb > Ni > Zn > Cr. (3) The two-dimensional ranking results of RDA (Redundancy analysis) analysis show that Ni is a natural source, derived from rock weathering and soil parent material, while Cr, Pb, Cu and Zn are anthropogenic sources from traffic and atmospheric deposition. (4) Spherical carbon dating show that the average deposition rate of Qingshan Lake after 1995 was 1.25 cm/year, the average deposition rate from 1950s to 1995 was 0.5 cm/year, and the deposition rate before 1950s was 0.3 cm/year. The evolution of heavy metal content in Qingshan Lake can be divided into four stages. Before the 1950s, the Huangshi area was in low industrial and agricultural outputs, and a relatively low industrial level, and hence a low heavy metal pollution; From 1950s to 1980s, after the founding of the People′s Republic of China, the industry started to develop, but at a relatively low speed which caused heavy metals to be enriched; From 1980s to 2000s, heavy industries of mining and metallurgy in Huangshi area continued to grow, and a large number of heavy metal pollutants were discharged into the environment, causing a rapid increases in heavy metal pollution.; After 2000s, mineral resources were gradually depleted, and with the upgrading of industrial technology and the promulgation of environmental protection regulations, heavy metal pollution was controlled to a reasonable level.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[2] 王 磊, 李成丽.  

我国中部地区城市群多中心结构的增长效应 [J]. 长江流域资源与环境, 2018, 27(10): 2231 -2240 .

[3] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[4] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481 -2495 .
[5] 康婷婷, 徐 欢, 张春华, 胡召玲. 区域尺度农田最大光能利用率参数估算及时空变化分析[J]. 长江流域资源与环境, 2018, 27(12): 2766 -2774 .
[6] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[7] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[8] 李佳佳 贺新光 卢希安. 长江流域月降水的EEMD多时间尺度遥相关分析[J]. 长江流域资源与环境, , (): 0 .
[9] 黄玥, 黄志霖, 肖文发, 曾立雄, 马良. 基于Mann-Kendall法的三峡库区长江干流入出库断面水质变化趋势分析[J]. 长江流域资源与环境, 2019, 28(04): 950 -961 .
[10] 罗若愚, 钟易霖. 成都市社会空间结构演变研究(2000~2010)[J]. 长江流域资源与环境, 0, (): 768 -782 .