长江流域资源与环境 >> 2023, Vol. 32 >> Issue (11): 2225-2336.doi: 10.11870/cjlyzyyhj202311001

• 区域可持续发展 •    下一篇

长江经济带能源消费碳排放强度时空演变及影响因素

赵  凡1,许  佩2*   

  1. (1.武汉科技大学法学与经济学院,湖北 武汉 430065;2.扬州大学商学院,江苏 扬州 225100)
  • 出版日期:2023-11-20 发布日期:2023-11-28

Spatial-temporal Evolution and Analysis of Influencing Factors of Energy Consumption and in the Yangtze River Economic Belt

ZHAO Fan1, XU Pei2   

  1. (1.School of Literature, Law and Economics, Wuhan University of Science and Technology, Wuhan 430065, China; 2. Business school, Yangzhou University, Yangzhou 225100, China)
  • Online:2023-11-20 Published:2023-11-28

摘要: 城市是碳排放最集中的地区,同时由于城市部门众多、管辖力强,也是深度参与和有力执行国家减排目标和减排政策最合适的尺度。选取2003~2020年长江经济带108个城市相关数据,测算了各城市的能源消费碳排放强度,进一步采用核密度分析、STIRPAT模型和面板分位数回归模型,分析长江经济带城市能源消费碳排放强度的时空特征和影响机理,结果表明:(1)2003~2020年长江经济带城市平均能源消费碳排放强度基本一直保持下降的趋势,从2003年的1.87 t/万元降至2020年的0.51 t/万元,年平均增长率为 -7.34%。(2)长江经济带城市能源消费碳排放强度在空间上呈现出从由化石能源相对稀缺的下游地区向相对丰裕的中上游地区不断增强的趋势,从城市规模来看呈现“小城市>中等城市>大城市”的等级规模特征。(3)经济增长、人口规模、政府干预和产业结构升级显著抑制能源消费碳排放强度提升,人力资本水平和能源强度是使城市能源消费碳排放强度增大的主要因素,其中人力资本水平的正向促进作用在能源强度低的城市不显著。

Abstract: As the concentratareas of carbon emissions, cities are meanwhile the most suitable to deeply participate and effectively implement nationwide emission reduction targets and emission reduction policies numerous city administrations that have strong jurisdictions. ased on the data of 108 cities in the Yangtze River Economic Beltestimate the carbon intensity of energy consumption and analye its evaluation of spatial-temporal features and influencing mechanisms kernel density analysis, STIRPAT model, and quantile regression panel model. We fthat: (1) The cities’ average carbon intensity energy in the Yangtze River Economic Belt hamaintained a downward trend from 2003 to 2020, decreasing from 1.87 yuan in 2003 to 0.51 t/ 10 000 yuan in 2020 with an annual average growth rate of -7.34%. (2) For the spatial evaluation, the cities’ average carbon intensity energy showa continuously increasing spatial feature, which shiftfrom downstream regions with scarce fossil fuels to midstream and upstream regions with abundant fossil fuels. Besides, the cities’ carbon intensity energy s highest in small cities, followed by medium-sized cities, and lowest in large cities “small cities>medium-sized cities>large cities”. (3) Economic growth, population size, government intervention, and industrial structure significantly can reduce the carbon intensity of energy consumption, but the human capital level and energy intensity were the main contributing factorshe positive promotion effect of human capital level no significant for low energy intensity cities. e suggested that government take different carbon intensity levels into full consideration before policy making.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[4] 冯 畅, 毛德华, 周 慧, 曹艳敏, 胡光伟. 流域绿水管理博弈建模及应用分析[J]. 长江流域资源与环境, 2018, 27(11): 2505 -2517 .
[5] 刘冀, 孙周亮, 张特, 程雄, 董晓华, 谈新. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11): 2558 -2567 .
[6] 周彦锋, 吕大伟, 葛 优, 王晨赫, 刘剑羽, 张 丽, 尤 洋, . 淀山湖河蚬翘嘴红鲌国家级水产种质资源保护区翘嘴鲌产卵场现状[J]. 长江流域资源与环境, 2018, 27(12): 2733 -2739 .
[7] 谢五三, 吴 蓉, 丁小俊. 基于FloodArea模型的城市内涝灾害风险评估与预警[J]. 长江流域资源与环境, 2018, 27(12): 2848 -2855 .
[8] 刘雁慧 李阳兵. 中国水资源承载力评价及变化研究[J]. 长江流域资源与环境, , (): 0 .
[9] 刘晓阳 黄晓东 丁志伟. 长江经济带县域信息化水平的空间差异研究[J]. 长江流域资源与环境, , (): 0 .
[10] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .