长江流域资源与环境 >> 2018, Vol. 27 >> Issue (11): 2558-2567.doi: 10.11870/cjlyzyyhj201811017

• 生态环境 • 上一篇    下一篇

基于不同卫星降雨产品的澴水花园流域径流模拟比较研究

刘冀1,2,孙周亮1,2,张特1,2,程雄1,2,董晓华1,2,谈新3   

  1. (1.三峡大学水利与环境学院,湖北 宜昌 443002;2.水资源安全保障湖北省协同创新中心,湖北 武汉430072;
    3.湖北省孝感市水文水资源勘测局,湖北 孝感 432000
  • 出版日期:2018-11-20 发布日期:2018-12-14

Hydrological Evaluations of Runoff Simulations Based on Multiple Satellite Precipitation Products over the Huayuan Catchment

LIU Ji1,2, SUN Zhouliang1,2, ZHANG Te1,2, CHENG Xiong1,2, DONG Xiaohua1,2, TAN Xin3   

  1. (1.College of Hydraulic and Environmental,China Three Gorges University,Yichang 443002, China;
    2.Hubei Collaborative Innovation Center for Water Resources Security,Wuhan 430072,China;
    3.Xiaogan Hydrology and Water Resources Survey Bureau of Hubei Province,Xiaogan 432000, China
  • Online:2018-11-20 Published:2018-12-14

摘要:  卫星降雨产品作为缺资料或无资料地区估算流域降雨径流的一种途径,适用性尚需大量实验研究。以澴水花园流域为研究区,综合评估了TRMM(3B42V7)、TRMM_RT(3B42V7)、PERSIANNCDR和CMORPH 4个卫星降雨产品在流域平均雨量计算与径流模拟中的精度,设置多方案与多种水文模拟情景全面检验各降雨产品的可靠性与适用性。研究表明:(1)在研究期2002~2013年,没有一个卫星降雨产品对所有精度评价指标均表现最优,PERSIANN始终表现为最差;(2)各卫星降雨产品对于不同年代和不同统计时段的精度差异明显,且一般汛期精度高于全年精度。各年代精度最高的卫星降雨产品在年与汛期尺度上与实测雨量相关系数均超过0.9;(3)各卫星降雨产品对有雨日降雨探测能力较强,但空报率较高,所有卫星降雨产品对于年最大1 d、3 d和7 d降雨估算误差较大,无法达到可利用精度;(4)采用卫星降雨产品进行径流模拟时,以相应的卫星降雨进行水文模型参数率定可获得更高的模拟精度。TRMM_RT与CMORPH日径流模拟精度较好,CMORPH月径流模拟精度较好。总体而言,CMORPH更适用于径流模拟。对于典型的3场大洪水模拟结果表明,TRMM_RT和CMORPH对洪峰与洪量(径流深)的模拟精度相对较高。

关键词:  , 卫星降雨;径流模拟;花园流域;水文模型

Abstract: Satellite precipitation products, as a new data source for estimating rainfall and runoff in watersheds with sparse or no data, still require extensive experiments to evaluate their applicability. This study systematically evaluated the accuracies of 4 satellite precipitation products, i.e. TRMM(3B42V7), TRMM_RT(3B42V7), PERSIANNCDR, and CMORPH, in calculating catchmentaveraged rainfall and simulating runoff for the Huanshui RiverHuayuan watershed; the applicability and reliability of each precipitation product were thoroughly examined by postulating multiple plans and hydrological scenarios. Results indicate that: (1) None of the 4 tested satellite precipitation products is consistently optimal in all plans/scenarios during the study period 20022013, whilst the performance of PERSIANN product is always the worst; (2) Differences in the accuracy of satellite precipitation products in different years and statistical periods are distinct, and the accuracy in flood period is higher than that for the whole year. The correlation coefficients between satellitebased rainfall data (derived from the most accurate satellite precipitation product in each year) and the gauge rainfall data are higher than 0.9 at annual and floodperiod time scales; (3) Satellite precipitation products present good performance in rainfall estimation during rainy days, though with relatively high nohitting rates. All satellite precipitation products show relatively bigger error in estimating annual maximum 1day, 3day, and 7day precipitation amounts, failing to meet the required precision for applications; (4) For runoff simulations, calibrating hydrological model parameters based on the corresponding product would achieve higher accuracy. TRMM_RT and CMORPH products are more accurate in daily runoff simulations, while CMORPH product outperforms in monthly runoff simulations. In conclusion, CMORPH product is more applicable for runoff simulation. As suggested by the simulations of 3 typical flood events, TRMM_RT and CMORPH products are of higher accuracy in simulating flood peak and volume (runoff depth).

Key words: satellite precipitation estimation, runoff simulation, Huayuan catchment, Xin’anjang hydrological model

[1] 周晟吕, 李月寒, 胡 静, 封竞男. 基于问卷调查的上海市大气环境质量改善的支付意愿研究[J]. 长江流域资源与环境, 2018, 27(11): 2419-2424.
[2] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453-2462.
[3] 赵 毅, 徐绪堪, 李晓娟. 基于变权灰色云模型的江苏省水环境系统脆弱性评价[J]. 长江流域资源与环境, 2018, 27(11): 2463-2471.
[4] 唐子珺, 陈龙, 覃军, 郑翔. 武汉市一次污染过程的局地流场和边界层结构的数值模拟[J]. 长江流域资源与环境, 2018, 27(11): 2540-2547.
[5] 王东香, 张一鸣, 王锐诚, 赵炳炎, 张志麒, 黄咸雨, . 神农架大九湖泥炭地孔隙水溶解有机碳特征及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2568-2577.
[6] 周惠, 赵微, 汪飞腾. 农地整理后期管护制度绩效研究:影响路径及中介效应分析[J]. 长江流域资源与环境, 2018, 27(11): 2629-2639.
[7] 陶燕东1,2,于克锋1,2,何培民1,2, 孙彬1,2,历成伟1,2, 赵萌1,2, 方淑波1,2*. 围垦后南汇东滩海三棱藨草的空间分布及其影响因子研究[J]. 长江流域资源与环境, 2017, 26(07): 1032-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[2] 孔令强. 水电工程农村移民入股安置模式初探[J]. 长江流域资源与环境, 2008, 17(2): 185 .
[3] 杨丽霞,杨桂山,苑韶峰. 数学模型在人口预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(3): 287 -291 .
[4] 王文林, 唐晓燕, 胡孟春, 王国祥. 人工重建的水生植物群落演替动态研究[J]. 长江流域资源与环境, 2009, 18(9): 802 .
[5] 梁益同, 夏智宏, 柳晶辉, 黄靖. 基于RS和GIS的2008年长江中下游雪灾监测——以湖北省为例[J]. 长江流域资源与环境, 2009, 18(9): 881 .
[6] 张细兵, 卢金友, 王敏, 黄悦, 许全??20. 三峡工程运用后洞庭湖水沙情势变化及其影响初步分析[J]. 长江流域资源与环境, 2010, 19(06): 640 .
[7] 余辉, 燕姝雯, 徐??20. 太湖出入湖河流水质多元统计分析[J]. 长江流域资源与环境, 2010, 19(06): 696 .
[8] 任华堂, 夏建新, 陶亚. 阿海水库水温数值预测研究[J]. 长江流域资源与环境, 2010, 19(7): 814 .
[9] 王 圣| 王慧敏| 陈 辉| 孙雪丽| 李亚春. 基于Divisia分解法的江苏沿海地区碳排放影响因素研究[J]. 长江流域资源与环境, 2011, 20(10): 1243 .
[10] 孙懿慧|贺立源. 基于GIS的湖北省水稻生产潜力研究[J]. 长江流域资源与环境, 2012, 21(10): 1209 .