长江流域资源与环境 >> 2023, Vol. 32 >> Issue (12): 2625-2637.doi: 10.11870/cjlyzyyhj202312014

• 生态环境 • 上一篇    下一篇

武汉市沉湖湿地水化学特征及成因

张雅1,刘力1,李朋1,李琳静1,潘龙克1,冯江2,叶婷2
  

  1. (1.湖北省地质调查院,湖北 武汉 430034;2.武汉市蔡甸区沉湖湿地自然保护区管理局,湖北 武汉 431608)

  • 出版日期:2023-12-20 发布日期:2023-12-25

Hydrochemical Characteristics and Formation Mechanism of the Chen Lake Wetland, Wuhan City

ZHANG Ya1,LIU Li1,LI Peng1,LI Lin-jing1,PAN Long-ke1,FENG Jiang2,YE Ting2   

  1. (1.Hubei Geological Survey, Wuhan 430034, China;2.Administration of Chenhu Wetland Nature Reserve, Caidian District, Wuhan City, Wuhan 431608, China)
  • Online:2023-12-20 Published:2023-12-25

摘要: 为探究沉湖国际重要湿地水化学特征及物质来源,服务沉湖湿地生态环境保护和系统修复,分别于2020年8和12月系统采集湿地湖区主要河流黄丝河河水、3个子湖(沉湖、张家大湖、王家涉湖)湖水样品和湿地周边地下水样品,综合运用水化学和统计分析方法,分析湿地河湖水主要离子组成特征与空间分布,探讨湿地化学演化过程的主要控制因子和离子来源。结果表明:沉湖河湖水整体呈中性至弱碱性,含量最高的阴阳离子分别为HCO3-和Ca2+,水化学类型主要为HCO3-Ca型。枯水期由于水动力条件差,河湖水各组分含量空间差异性大于丰水期。河湖水离子主要来源于碳酸盐岩和硅酸盐岩风化溶解,同时枯水期黄丝河水、王家涉湖水和地下水也受阳离子交换作用的影响。丰水期受农业活动和生活污水影响,枯水期受工矿活动影响,湿地的水化学组成受到自然和人类活动的共同作用。

Abstract: To investigate the hydrochemical characteristics and controls of surface water and groundwater in Chen Lake Wetland, the water samples of inflowing rivers and main lakes were collected and analyzed in August (rainy season) and December (dry season) 2020. The results showed that the surface water was neutral to weakly alkaline. HCO3- and Ca2+ were the most abundant anions and cations, respectively, and the main hydrochemical type was HCO3-Ca. Surface water components were mainly derived from weathering and dissolution of carbonate rocks and silicate rocks, and were also influenced by cation exchange. The spatial variability of surface water compositions increased from wet season to dry season due to weakening hydrodynamic conditions. The chemical composition of surface water in the wet season was affected by agricultural activities and domestic sewage, and was affected by industrial and mining activities in the dry season, respectively. These observations demonstrated how the hydrochemical composition of the wetland was controlled by a combination of natural factors and human activities.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 熊鸿斌, 周凌燕. 基于PSR-灰靶模型的巢湖环湖防洪治理工程生态环境影响评价研究[J]. 长江流域资源与环境, 2018, 27(09): 1977 -1987 .
[4] 李嘉译, 匡鸿海, 谭 超, 王佩佩. 长江经济带城市扩张的时空特征与生态响应[J]. 长江流域资源与环境, 2018, 27(10): 2153 -2161 .
[5] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[6] 唐子珺, 陈龙, 覃军, 郑翔. 武汉市一次污染过程的局地流场和边界层结构的数值模拟[J]. 长江流域资源与环境, 2018, 27(11): 2540 -2547 .
[7] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1 -11 .
[8] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[9] 赵树成, 张展羽, 夏继红, 杨洁, 盛丽婷, 唐丹, 陈晓安, . 鄱阳湖滨岸土壤磷素吸附特征研究[J]. 长江流域资源与环境, 2019, 28(01): 166 -174 .
[10] 阮甜, 查芊郁, 杨茹, 高超. 全球升温1.5℃和2.0℃对长江寸滩站以上流域径流的影响[J]. 长江流域资源与环境, 2019, 28(02): 407 -415 .