长江流域资源与环境 >> 2024, Vol. 33 >> Issue (1): 189-200.doi: 10.11870/cjlyzyyhj202401016

• 生态环境 • 上一篇    下一篇

嘉陵江河岸湿地土壤中参与多环芳烃降解的关键微生物

颜辰瑶1,杨蕊毓1,叶春宏1,吴一超1 ,彭超1*, 路璐2   

  1. (1. 西华师范大学生命科学学院,四川 南充 637009;2. 西华师范大学环境科学与工程学院,四川 南充 637009)
  • 出版日期:2024-01-20 发布日期:2024-02-01

Key Microorganisms Involved in Aerobic Polycyclic in the Soil of the Jialing River Riparian Wetland

YAN Chen-yao1 ,YANG Rui-yu1 ,YE Chun-hong1 , WU Yi-chao1 ,PENG Chao1, LU Lu2   

  1. (1.College of Life Sciences, China West Normal University, Nanchong 637002,China; 2.College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China)
  • Online:2024-01-20 Published:2024-02-01

摘要: 为了探究河岸湿地土壤中多环芳烃(PAHs)在好氧和厌氧环境下的微生物降解过程,采用微宇宙培养结合高通量测序及化学分析方法,揭示了嘉陵江河岸湿地土壤对萘、荧蒽和芘3种PAHs的好氧和厌氧降解速率及其关键降解微生物类群,以及厌氧条件下添加不同电子受体对PAHs微生物降解过程的影响。结果表明,在培养35 d后,有氧条件下,萘、荧蒽和芘的去除率分别为70.6%、61.5%和41.41%;在厌氧条件下,萘、荧蒽和芘的去除率分别为76.01%、72.59%和42.57%。添加NO3-显著促进了荧蒽和芘的厌氧降解效率,而添加SO42-显著抑制了3种PAHs的厌氧降解效率;水铁矿Fe(III)仅显著促进了芘的降解效率,针铁矿Fe(III)仅促进了荧蒽的降解效率。添加PAHs均显著促进了phnAc和bssA等功能基因的丰度。测序结果表明,好氧环境下的PAHs主导降解菌群为MND1、Arenimonas、Mycobacterium和Burkholderiales,而厌氧环境下则为Geobacteraceae、Hydrogenophaga和Bacteroidetes_vadinHA17。添加不同的电子受体改变了潜在的PAHs降解菌群,如添加NO3-显著促进了Lysobacter、Arenimonas等菌的增加。该研究表明河岸湿地土壤中PAHs降解过程由不同的好氧和厌氧降解菌群共同驱动,NO3-和Fe(III)依赖型厌氧PAHs降解微生物可能对河岸湿地土壤中的PAHs移除有重要贡献。


Abstract: To investigate the aerobic and anaerobic microbial degradation of polycyclic aromatic hydrocarbons (PAHs) in riparian wetland soil, a microcosm incubation-based experiment combined with chemical analysis and 16S rRNA amplicon sequencing analysis was employed. The aerobic and anaerobic degradation rates of naphthalene, fluoranthene and pyrene and their key degradation microorganisms in a wetland soil sample of the JialingRiver, as well as the effects of different electron receptors on the microbial degradation of PAHs under anaerobic conditions, were explored. The results showed that the dissipation rates of naphthalene, fluoranthene and pyrene were 70.6%, 61.5% and 41.41% under aerobic conditions after incubation for 35 days, respectively. Under anaerobic condition, the dissipation rates of naphthalene, fluoranthene and pyrene were 76.01%, 72.59% and 42.57%. The addition of NO3- significantly promoted the anaerobic degradation efficiency of all the three PAHs, whereas the addition of SO42-inhibited the PAHs degradation. The addition of ferrihydrite (Fe(Ⅲ)) stimulated the degradation of pyrene, whereas the addition of goethite (Fe (Ⅲ)) stimulated the degradation of fluoranthene.The results of quantitative analysis of functional genes showed that the abundance of phnAc and bssA significantly increased under aerobic andanerobic conditions after the addition of PAHs. The sequencing results showed that the main aerobic PAHs-degrading bacteria were MND1, Arenimonas, Mycobacterium and Burkholderiales, whereasthe dominant PAHs-degrading bacteria shifted to Geobacteraceae, Hydrogenophaga and Bacteroidetes_vadinHA17 under anaerobic condition. The potential PAHs-degrading bacteria communities were influenced by the addition of different electron acceptors.Lysobacter and Arenimonas were significantly stimulated by the addition of NO3-. These results showed that the microbial PAHs degradation in the riparian wetland soil was jointly driven by different aerobic and anaerobic PAHs-degrading bacteria. The nitrate or Fe(III)-dependent anaerobic microbial PAHs degradation may have important contributions to the removal of PAHs in riparian wetland soils.


No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[2] 伍文琪, 罗贤, 黄玮。李运刚. 云南省水资源承载力评价与时空分布特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1385 .
[3] 王辉, 延军平, 王鹏涛, 武亚群. 多民族地区经济差异的空间格局演变[J]. 长江流域资源与环境, 2018, 27(07): 1390 .
[4] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[5] 杨宏, 李会琳, 路璐. 嘉陵江(南充段)水体及其底泥中氨氧化微生物群落空间分布特征及其与环境因子关系[J]. 长江流域资源与环境, 2018, 27(08): 1836 .
[6] 李恩康, 陆玉麒, 王 毅, 黄群芳, 郭 政. 城镇化对制度转型的影响——基于江苏13个市的脉冲响应函数分析[J]. 长江流域资源与环境, 2018, 27(09): 1919 -1927 .
[7] 魏国恩, 朱 翔, 贺清云. 环长株潭城市群空间联系演变特征与对策研究[J]. 长江流域资源与环境, 2018, 27(09): 1958 -1967 .
[8] 啜明英, 马骏, 刘德富, 杨正健. 整流幕对香溪河库湾水温特性影响数值模拟[J]. 长江流域资源与环境, 2018, 27(09): 2101 -2113 .
[9] 朱寅健. (新)环鄱阳湖区域交通网络通达性与旅游一体化发展[J]. 长江流域资源与环境, , (): 0 .
[10] 田 鹏, 李加林, 史小丽, 王丽佳, 刘瑞清. 浙江省土地利用格局时空变化及生态风险评价[J]. 长江流域资源与环境, 2018, 27(12): 2697 -2706 .