长江流域资源与环境 >> 2024, Vol. 33 >> Issue (6): 1262-1272.doi: 10.11870/cjlyzyyhj202406011

• 自然资源 • 上一篇    下一篇

基于IPSO-EGA-LSTM模型的洞庭湖水位预测方案研究

隆院男1,2,潘鹤鸣1,盛东3*,黄春福1,宋昕熠1,2,刘易庄1,2   

  1. (1.长沙理工大学水利与环境工程学院,湖南 长沙 410114; 2.洞庭湖水环境治理与生态修复湖南省重点实验室,湖南 长沙 410114; 3.湖南省水利水电科学研究院,湖南 长沙 410000)
  • 出版日期:2024-06-20 发布日期:2024-06-26

Water Level Prediction Schemes of Dongting Lake Based on IPSO-EGA-LSTM Model

LONG Yuan-nan1,2, PAN He-ming1, SHENG Dong3, HUANG Chun-fu1, SONG Xin-yi1,2, LIU Yi-zhuang1,2   

  1. (1. School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China;2. Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China;3. Hunan Institute of Water Resources and Hydropower Research, Changsha 410000, China)
  • Online:2024-06-20 Published:2024-06-26

摘要: 准确的水位预测能够为湖区防洪减灾及水资源管理提供科学依据。通过引入IPSO改进粒子群算法及EGA精英遗传算法,优化LSTM长短期记忆神经网络结构,应用改进的IPSO-EGA-LSTM模型开展洞庭湖区各水位站1d预见期下的水位预测,与LSTM、GRU和BP神经网络模型进行精度对比,并评估该模型在更长预见期下(3d、5d、7d)的预测精度;进一步设置3种模型输入条件,提出相应水位预测方案(直接预测、同步预测、滚动预测),探究各预报方案在不同预见期下的水位预测精度。结果表明,IPSO-EGA-LSTM模型对洞庭湖水位的预测效果优于传统神经网络模型,能够有效捕捉到不同预见期下洞庭湖水位变化趋势,1d预见期纳什效率系数(NSE)大于0.998,长预见期下NSE大于0.9;不同输入条件下的3种预报方案对洞庭湖水位均有较好预测效果,其中,同步预测方案在长预见期条件下比直接预测和滚动预测表现出更好的性能。

Abstract: Accurate water level prediction can provide scientific basis for flood control and disaster reduction and water resource management in lake area. In this paper, the IPSO improved particle swarm optimization algorithm and EGA elite genetic algorithm were introduced to optimize the LSTM long short term memory neural network structure. The improved IPSO-EGA-LSTM model was used to predict the water level of the gauging stations in Dongting Lake area under the 1d forecast period. The accuracy of the model was compared with the LSTM, GRU and BP neural network models. The prediction accuracy of the model was evaluated under the longer forecast period (3d, 5d and 7d). Three kinds of model input conditions were further set, corresponding water level prediction schemes were put forward, and the prediction accuracy of each forecasting scheme (direct forecasting, synchronous forecasting, rolling forecasting) under different forecast periods was explored. The results showed that the IPSO-EGA-LSTM model was better than the traditional neural network model in predicting the water level of Dongting Lake. It effectively captured the variation characteristics of water level of Dongting Lake in different forecast periods. The Nash efficiency coefficient (NSE) in 1d forecast period was greater than 0.998, and the NSE was still greater than 0.9 in long forecast period. The three prediction schemes under different input conditions demonstrated better prediction effects, among which the synchronous prediction scheme had better performance than the direct prediction and rolling prediction under the long prediction periods.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张鑫, 陈志刚. 经济增长激励、官员异质性与城市工业污染:以长三角地区为例[J]. 长江流域资源与环境, 2018, 27(07): 1314 .
[2] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[3] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[4] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[5] 刘钢, 刘坤琳, 汪玮茜, 赵爽. 水质感知视角下水库移民满意度分析——基于有序逻辑回归的实证研究[J]. 长江流域资源与环境, 2018, 27(07): 1355 .
[6] 戢晓峰, 刘丁硕. 基于3D理论与SEM的县域交通可达性与空间贫困的耦合机制[J]. 长江流域资源与环境, 2018, 27(07): 1360 .
[7] 张大鹏, 曹卫东, 姚兆钊, 岳洋, 任亚文. 上海大都市区物流企业区位分布特征及其演化[J]. 长江流域资源与环境, 2018, 27(07): 1365 .
[8] 佘颖, 刘耀彬. 国内外绿色发展制度演化的历史脉络及启示[J]. 长江流域资源与环境, 2018, 27(07): 1370 .
[9] 侯雯嘉, 陈长青, 乔辉, 孙新素, 周曙东. 1980~2009年长江下游地区油菜冻害时空特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1375 .
[10] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .