长江流域资源与环境 >> 2025, Vol. 34 >> Issue (09): 2041-.doi: 10.11870/cjlyzyyhj202509012

• 生态环境 • 上一篇    下一篇

长江流域极端降水的未来预估——基于N-CMIP6高分辨率数据集不同温升水平的分析

温姗姗1,翟建青2,王智晨1,蒋富霜1   

  1. (1. 安徽师范大学地理与旅游学院,安徽 芜湖 241002; 2. 国家气候中心气候系统预测与变化应对全国重点实验室,北京 100081)
  • 出版日期:2025-09-20 发布日期:2025-09-22

Future Projections of Extreme Precipitation in the Yangtze River Basin: High-Resolution N-CMIP6 Dataset Analysis under Multiple Warming Levels

WEN Shan-shan 1,ZHAI Jian-qing 2,WANG Zhi-chen 1,JIANG Fu-shuang 1   

  1. (1. School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China;2. State Key Laboratory of Climate System Prediction and Risk Management, National Climate Centre, China Meteorological Administration, Beijing 100081, China)
  • Online:2025-09-20 Published:2025-09-22

摘要: 在全球变暖背景下,长江流域经历了显著升温和频繁的极端降水事件。基于NEX-GDDP-CMIP6(N-CMIP6)数据集,利用多模式集合(MME)系统评估了气候模式模拟性能并量化了不同温升水平(1.5 °C、2 °C、3 °C、4 °C)下极端降水演变规律。结果表明,1961~2023年,年降水总量(PRCPTOT)和极端降水强度(R95p、Rx1day、Rx5day)长期趋势未通过显著性检验(p>0.05),但空间分异显著,下游短历时强降水增强与中游降水衰减并存,持续干旱日数(CDD)以-0.89 d/10a速率显著下降(p<0.05)。伴随温升,极端降水呈非线性增强,3 °C~4 °C阶段增速较1.5 °C~2 °C阶段提升3~6倍。4 °C时短历时降水(Rx1day)增幅(23.3%)为长历时事件(Rx5day,15.7%)的1.5倍,中下游部分地区降水集中度增幅超50%。旱涝风险空间分异加剧,上游强降水与干旱持续期缩短并存,下游则可能面临极端降水增强叠加干旱延长的复合风险。控温1.5 °C~2 °C可降低46%~84%的极端降水增幅,显著减少极端降水风险。研究结果为长江流域水资源管理和气候适应提供了科学依据,强调了控制全球温升对区域可持续发展的重要性。

Abstract: Under global warming, the Yangtze River Basin has experienced significant warming and an increased frequency of extreme precipitation events. This study systematically evaluated the performance of climate models and quantified the evolution of extreme precipitation under various warming levels (1.5°C, 2°C, 3°C, and 4°C) using the NEX-GDDP-CMIP6 (N-CMIP6) dataset and a multi-model ensemble (MME). The results showed that, from 1961 to 2023, annual precipitation (PRCPTOT) and extreme precipitation intensity indices (R95p, Rx1day, Rx5day) exhibited no statistically significant long-term trends but demonstrated substantial spatial divergence (p>0.05). Specifically, short-duration heavy precipitation increased in the lower basin, while it attenuated in the middle basin. Concurrently, consecutive dry days (CDD) significantly decreased at a rate of -0.89 days per decade (p<0.05). As warming intensified, extreme precipitation amplified nonlinearly. The growth rates in the 3°C-4°C phase exceeded those by 3-6 times in the 1.5°C-2°C phase. At 4°C of warming, the increase in short-duration precipitation (Rx1day, 23.3%) was 1.5 times higher than that of prolonged events (Rx5day, 15.7%), and precipitation concentration in parts of the middle-lower basin exceeded 50%. The spatial divergence of hydroclimatic risks intensified: the upper and middle regions faced concurrent heavy precipitation and shortened drought duration, while the lower basin was exposed to compounded risks of amplified extreme precipitation and prolonged droughts. Limiting global warming to 1.5°C-2°C could reduce extreme precipitation amplification by 46%-84%, and might significantly mitigate associated risks. These findings provided a scientific foundation for water resource management and climate adaptation strategies in the Yangtze River Basin, and highlighted the critical importance of controlling global temperature rise for sustainable regional development.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!