长江流域资源与环境 >> 2006, Vol. 15 >> Issue (4): 527-530.

• 生态环境 • 上一篇    下一篇

基于相空间神经网络耦合模型的径流降尺度分析

黄 胜1,2,梁 川1   

  • 收稿日期:2005-08-19 修回日期:2005-11-16 出版日期:2006-07-20
  • 通讯作者: 黄 胜

DOWNSCALING ANALYSIS OF RUNOFF BASED ON THE MODEL INTEGRATING PHASE SPACE RECONSTRUCTION AND ARTIFICIAL NEURAL NETWORK

HUANG Sheng1,2,LIANG Chuan1   

  • Received:2005-08-19 Revised:2005-11-16 Online:2006-07-20
  • Contact: HUANG Sheng

摘要: 基于混沌理论和神经网络理论,研究水文科学的尺度问题,将混沌神经网络分析方法应用于径流的降尺度分析。首先通过对年径流量分解到月径流量的分解系数的分析,证明了分解系数具有混沌特性;其次利用相空间BP神经网络模型对分解系数进行预测,并根据预测结果进行月径流量的降尺度计算。实例研究表明,用神经网络拟合分解系数相空间的相点演化非线性关系和用相空间神经网络模型对径流作降尺度分析是可行的。

关键词: 混沌理论, 分解系数, 相空间神经网络模型, BP神经网络, 水文尺度分析

Abstract: In this paper, the problem of hydrological scale was discussed based on the chaos theory and artificial neural networks, and a method on the chaos theory and neural networks was used to analyze runoff downscaling. After comparing the chaotic characteristics of decomposition coefficient of annual runoff in large scale with decomposed monthly runoff in small scale, it is concluded that the decomposition coefficient series belong to chaotic series. A BP neural networks model based on chaotic phase space was used in forecasting the decomposition coefficient, and the predicted result used in calculating monthly runoff downscaling. Test results demonstrated that it is reasonable to use BP artificial neural networks for the description of nonlinear relation in the phase change of decomposition coefficients and to use a BP neural networks model based on chaotic phase space for the analysis of runoff downscaling.

Key words: chaos theory, decomposition coefficient, neural networks model based on chaotic phase space, backpropagation artificial neural network, hydrological scale analysis

[1] 刘倩倩, 陈岩. 基于粗糙集和BP神经网络的流域水资源脆弱性预测研究——以淮河流域为例[J]. 长江流域资源与环境, 2016, 25(09): 1317-1327.
[2] 付莲莲, 朱红根, 周曙东. 江西省气候变化的特征及其对水稻产量的贡献——基于“气候-经济”模型[J]. 长江流域资源与环境, 2016, 25(04): 590-598.
[3] 庄建琦, 崔鹏. 基于BP神经网络泥石流沟发育阶段的判定[J]. 长江流域资源与环境, 2009, 18(9): 849-.
[4] 吴开亚. 区域生态安全评价的BP神经网络方法[J]. 长江流域资源与环境, 2008, 17(2): 317-317.
[5] 赵姚阳,濮励杰,胡晓添. BP神经网络在城市建成区面积预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(1): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!