长江流域资源与环境 >> 2014, Vol. 23 >> Issue (06): 816-.doi: 10.11870/cjlyzyyhj201406010

• 自然资源 • 上一篇    下一篇

运动消耗对草鱼幼鱼游泳能力的影响

房敏,蔡露,高勇,涂志英,王从锋,黄应平   

  1. (1三峡大学水利与环境学院,湖北 宜昌 443002;2 三峡大学三峡库区生态环境教育部工程研究中心,湖北 宜昌 443002;[JP]
    3中国长江三峡集团公司中华鲟研究所,湖北 宜昌 443100)
  • 出版日期:2014-06-20

EFFECT OF ACTIVITY COST ON SWIMMING CAPABILITY OF#br# GRASS CARP (CTENOPHARYNGODON IDELLUS)

FANG Min1,2,CAI Lu2,GAO Yong3,TU Zhiying2,WANG Congfeng1,2,HUANG Yingping1,2   

  1. (1College of Hydraulic & Environmental Engineering,China Three Gorges University,Yichang 443002,China; 2Engineering Research 
    Center of Ecoenvironment in Three Gorges Reservoir Region,Ministry of Education,China Three Gorges University,Yichang 443002,China;
    3Institute of Chinese Sturgeon Research,China Three Gorges Project Corporation,Yichang 443100,China)
  • Online:2014-06-20

摘要:

以草鱼幼鱼(体长80~97 cm,体重96~134 g)为研究对象,采用实验室专利装置研究了不同运动消耗状态下的草鱼幼鱼游泳能力。结果表明:在正常状态下草鱼幼鱼的临界游泳速度[WTBX](Ucrit)为711±060 BL/s,耗氧率(MO2)与流速(U)方程拟合为MO2=4705+419U123,耗氧率随着流速的增大而增大,且草鱼的有氧运动效率较高。在4种运动消耗状态(06Ucrit、08Ucrit、10Ucrit、12Ucrit)流速下运动1 h草鱼的消耗后临界游泳速度(Upcrit)分别为:725±135、633±06、626±08、560±04 BL/s,临界游泳速度随着前期消耗流速的增大而减小,相应的耗氧率方程拟合为:MO2=38269+465U144,MO2=44526+4223U146,MO2=46611+4790U149,MO2=60034+3883U151。运动消耗会导致草鱼的有氧运动效率降低,同时随着运动消耗速度的增加有氧运动效率随之降低。研究结果认为在设计以草鱼为主要过鱼对象的过鱼设施时,鱼道内的流速不应大于08Ucrit,以使鱼类顺利通过。针对不同过鱼对象游泳特性进行设计的鱼道能够提高鱼类通过鱼道的效率

Abstract:

 Natural population of grass carp, a species of Cyprinidae commonly found in China, has been declining in recent years Interruption of free flowing river by dams is one of the important factors The degree of fatigue influences fish swimming capability and determines whether the fish could pass the fishways To understand the effect of  fatigue degree on swimming capability of grass crap, a laboratory study was conducted in a flumetype respirometer equipped with a high speed video camera system to [JP2]record swimming behavior The fish, body length (BL) ranging from 80 to 97 cm and body mass ranging from 96 to [JP]134 g, were selected in experiment The critical swimming speed ([WTBX]Ucrit [WT]) was 711±06 BL/s [JP]in the control group A power function accurately describes the relationship between oxygen consumption rate (MO2) and swimming speed (U).The function was [WTBX]MO2=4705+419U123 (R2=0976)[WT], showing oxygen consumption increased with swimming speed The critical swimming speeds after  activity cost ([WTBX]Upcrit[WT])were compared futher Four kinds of different previous activities cost (06/08/10/12 [WTBX]Ucrit [WT], in one hour) were measured at the 18±1oC The [WTBX]Upcrit[WT] was found to be 725±135, 633±060, 626±080, and 560±042 BL/s, respectively It is found that [WTBX]Upcrit[WT] was mostly smaller than [WTBX]Ucrit[WT],while the cost speed was greater than 08 [WTBX]Ucrit[WT]. The fish fatigue at high flow rate used great proportion of anaerobic metabolism and led to a large number of lactic acid accumulation, resulting in a big percentage of anaerobic metabolism This would [JP2]damage the swimming system The function of oxygen consumption rate was described as: MO2=38269+[JP]465U144,MO2=44526+4223U146,MO2=46611+4790U149 and MO2=60034+3883U151 The speed exponents indicate that the efficiency was becoming lower with increase of velocity during activity cost period It is therefore suggested that continuous swimming would not be harmful to swimming capability when the swimming speed was lower than 08 [WTBX]Ucrit[WT] This investigation is expected to provide the basic science of fish swimming behavior and the data required for the design of fishways The fishways depending on special fish could bring a better passing rate.[HJ1][HJ]

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .