长江流域资源与环境 >> 2015, Vol. 24 >> Issue (07): 1079-1085.doi: 10.11870/cjlyzyyhj201507001

• 区域可持续发展 •    下一篇

基于知识与规则的土地利用信息分层提取研究——以南京市都市区为例

乔伟峰1,2,3, 王亚华2,3, 项灵志4   

  1. 1. 中国科学院地理科学与资源研究所, 北京 100101;
    2. 南京师范大学地理科学学院, 江苏 南京 210023;
    3. 江苏省地理信息资源开发与利用协同创新中心, 江苏 南京 210023;
    4. 武汉大学资源与环境科学学院, 湖北 武汉 430079
  • 收稿日期:2014-08-07 修回日期:2014-09-21 出版日期:2015-07-20
  • 作者简介:乔伟峰(1975~),男,博士后,主要从事土地资源管理和GIS应用研究.E-mail:qwf@263.net
  • 基金资助:
    国家自然基金(41371172,41271189);中国博士后科学基金(2014M561040);中国博士后科学基金特别资助项目(2015T80127);江苏高校优势学科建设工程资助项目(164320H101)

HIERARCHICAL EXTRACTION OF LAND USE INFORMATION BASED ON KNOWLEDGE AND RULE——A CASE STUDY OF THE METROPOLITAN AREA OF NANJING

QIAO Wei-feng1,2,3, WANG Ya-hua2,3, XIANG Ling-zhi4   

  1. 1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    2. School of Geography Science, Nanjing Normal University, Nanjing 210023, China;
    3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China;
    4. School of Resource and Environment Science, Wuhan University, Wuhan 430079, China
  • Received:2014-08-07 Revised:2014-09-21 Online:2015-07-20
  • Contact: 王亚华,E-mail:Wangyahua@njnu.edu.cn E-mail:Wangyahua@njnu.edu.cn

摘要: 为了克服利用统一分类模型难以有效提高土地利用分类精度的问题,为土地利用/覆被定性、定量信息的提取提供一种高精度、高效率的提取方法,将分层信息提取法和基于知识规则的信息提取方法相结合,基于对南京市都市区的土地利用时空特点和研究区TM影像数据中各地类波谱信息的分析,结合了地类提取指数模型、DEM数据、城市建成区边界等,充分利用地学先验知识,设计了一套土地信息分层提取的流程,对土地利用信息进行了提取。利用该方法对2012年南京市都市区的土地利用/土地覆被信息提取的总体精度达到了88.67%,Kappa系数达到了0.85。实践证明,基于知识与规则的土地利用信息分层提取方法提取精度较高,适用性强,对其他地区的土地利用/覆被信息分类提取也有一定的借鉴意义。

关键词: 知识与规则, 土地利用/覆被, 分层提取, 南京市都市区

Abstract: The purpose of this paper is to overcome the problem that the uniform classification model cannot be used to improve the accuracy of land use classification effectively, and to provide a method with high precision and efficiency to extract qualitative and quantitative information of land use/cover. In this paper, two extraction methods, i.e., the hierarchical information extraction method and the method based on knowledge and rule, are combined. The hierarchical information extraction method can create a cleaner extracting environment when extracting specific types of land use/cover. The method based on knowledge and rule can give full play to the role of priori knowledge and experience, and reference diverse assistant information comprehensively. The purpose of combining the two methods is to further improve the classification accuracy. Taking the metropolitan area of Nanjing as an example, a set of land use information hierarchical extraction process is designed and put into effect. In the extraction process, TM image spectrum information and the temporal and spatial characteristics of land use in study area are fully considered. Using different ways and data such as water extraction index model, Ratio Resident-area Index (RRI), NDVI, DEM data and the urban built-up area boundary, we extracted eight types of land use/cover, i.e., water, urban build-up area, rural build-up area, mining land, bare land, woodland, farmland, and urban green land. Specially, we constructed a build-up and quarry discrimination index (BQDI) to efficiently distinguish build-up area from mining/bare land, and make full use of elevation and slope information to extract woodland from vegetation coverage area. In addition, the urban build-up area boundary plays an important role in distinguishing urban build-up area and rural build-up area, farmland and urban green land, mining land and bare land. The results showed that the overall accuracy (OA) reached 88.67%, and the Kappa index reached 0.85 when extracting the land use/cover information of 2012 in study area. Besides, the overall accuracy on other years' information extraction were all higher than 87%, and the Kappa index were all more than 0.84. We concluded that the hierarchical land use information extraction method based on knowledge and rule possesses high precision and wide applicability. The method has a good reference value to land use/cover extraction practice in other regions. Further research should be undertaken to increase the degree of automation in information extraction process, the efficiency and accuracy of extraction in the future.

Key words: knowledge and rule, land use/cover, hierarchical extraction, the metropolitan area of Nanjing

中图分类号: 

  • TP753
[1] 陈四清,刘纪远,庄大方,等.基于Landsat TM/ETM数据的锡林河流域土地覆盖变化[J].地理学报,2003(1):45-52.
[2] 陈佑启,杨 鹏.国际上土地利用/土地覆盖变化研究的新进展[J].经济地理,2001(1):95-100.
[3] 欧立业,何忠焕,马海州,等.基于知识的分层综合分类法在土地利用—土地覆盖遥感信息提取中的应用[J].测绘科学,2008,33(1):173-175.
[4] KANELLOPOULOS I,WILKINSON G G.Strategies and best practice for neural network image classification[J].International Journal of Remote Sensing,1997,18(4):711-725.
[5] SOLBERG A H S,TAXT T,JAIN A K.A Markov random field model for classification of multisource satellite imagery[J].Geoscience and Remote Sensing,IEEE Transactions on,1996,34(1):100-113.
[6] GONG P,HOWARTH P J.Frequency-based contextual classification and gray-level vector reduction for land-use identification[J].Photogrammetric Engineering and Remote Sensing,1992,58(4):423-437.
[7] 赵 萍,傅云飞,郑刘根.基于分类回归树分析的遥感影像土地利用/覆被分类研究[J].遥感学报,2005,9(6):708-716.
[8] PAL M,MATHER P M.Support vector machines for classification in remote sensing[J].International Journal of Remote Sensing,2005,26(5):1007-1011.
[9] 柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报,2005,9(5):555-563.
[10] MOTA G L A,FEITOSA R Q,COUTINHO H L C,et al.Multitemporal fuzzy classification model based on class transition possibilities[J].ISPRS Journal of Photogrammetry and Remote Sensing,2007,62(3):186-200.
[11] LUCAS R,ROWLANDS A,BROWN A,et al.Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping[J].ISPRS Journal of Photogrammetry & Remote Sensing,2007,62(3):165-185.
[12] JAEJOON L.Consensual and hierarchical classification of remotely sensed multispectral images[J].Transaction on Geoscience and Remote Sensing,2007,45(9):2953-2963.
[13] 向天梁,汪小钦,周小成,等.基于分层分析的ASTER影像土地利用/覆盖遥感监测研究[J].遥感技术与应用,2006,21(6):527-531.
[14] 周成虎,骆建承,杨晓梅,等.遥感影像地学理解与分析[M].北京:科学技术出版社,1999.
[15] 张明华.用改进的谱间关系模型提取极高山地区水体信息[J].地理与地理信息科学,2008,24(2):14-16,22.
[16] 胡召玲,李志江,杜培军.分层信息提取法在县域土地利用/覆被遥感中的应用[J].地理研究,2009,28(2):409-418.
[17] 车 风,林 辉.城市建设用地遥感信息提取方法研究[J].测绘科学,2010,35(4):97-99.
[18] 吴宏安,蒋建军,张海龙,等.比值居民地指数在城镇信息提取中的应用[J].南京师大学报(自然科学版),2006,29(3):118-121.
[19] 王永信,张成才,刘丹丹,等.基于ArcGIS9.0的DEM的生成及坡度分析[J].气象与环境科学,2007,30(2):48-51.
[20] 宋小冬,柳 朴,周一星.上海市城乡实体地域的划分[J].地理学报,2006,61(8):787-797.
[1] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[2] 于雪, 濮励杰, 许艳, 朱明. 1980~2010年江苏沿海城市土地利用变化及其与环境因子关系分析——以东台市为例[J]. 长江流域资源与环境, 2016, 25(04): 537-543.
[3] 赵筱青, 顾泽贤, 高翔宇. 人工园林大面积种植区土地利用/覆被变化对生态系统服务价值影响[J]. 长江流域资源与环境, 2016, 25(01): 88-97.
[4] 吕立刚, 周生路, 周兵兵, 陈龙, 苏全龙, 王静. 1985年以来江苏省土地利用变化对人类活动程度的响应[J]. 长江流域资源与环境, 2015, 24(07): 1086-1093.
[5] 陈莹, 尹义星, 陈爽. 典型流域土地利用/覆被变化预测及景观生态效应分析——以太湖上游西苕溪流域为例[J]. 长江流域资源与环境, 2009, 18(8): 765-.
[6] 柳晶辉,杨 坤,张 力. 丹江口库区土地利用/覆被与景观格局变化[J]. 长江流域资源与环境, 2008, 17(3): 456-456.
[7] 段飞舟, 刘雪华. 四川马边彝族自治县土地利用/覆被变化分析[J]. 长江流域资源与环境, 2008, 17(3): 461-461.
[8] 李加林,许继琴,童亿勤,杨晓平,张殿发. 杭州湾南岸滨海平原土地利用/覆被空间格局变化分析[J]. 长江流域资源与环境, 2005, 14(6): 709-713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 唐 琦,虞孝感. 长江三角洲地区经济可持续发展问题初探[J]. 长江流域资源与环境, 2006, 15(3): 269 -273 .
[3] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[4] 王海云,高太忠,高京,黄群贤. 基于AHPLP法的南水北调中线水资源优化配置[J]. 长江流域资源与环境, 2007, 16(5): 588 .
[5] 张 燕, 张 洪, 彭补拙. 土地资源、环境与经济发展的协调性评价[J]. 长江流域资源与环境, 2008, 17(4): 529 .
[6] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[7] 黄锡生,唐绍均. 三峡库区环境安全保护法律实施机制探讨[J]. 长江流域资源与环境, 2004, 13(6): 611 -615 .
[8] 张孝飞,林玉锁,俞 飞,李 波. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 14(4): 512 -515 .
[9] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[10] 廖富强,刘 影, 叶慕亚,郑 林. 鄱阳湖典型湿地生态环境脆弱性评价及压力分析[J]. 长江流域资源与环境, 2008, 17(1): 133 .