长江流域资源与环境 >> 2015, Vol. 24 >> Issue (08): 1366-1372.doi: 10.11870/cjlyzyyhj201508015

• 自然资源 • 上一篇    下一篇

云南省高原典型森林植被涵养水源功能研究

石小亮1,2, 张颖1, 单永娟1, 段维娜3   

  1. 1. 北京林业大学经济管理学院, 北京 100083;
    2. 沈阳农业大学经济管理学院, 辽宁 沈阳 110866;
    3. 天津市国土资源和房屋管理局, 天津 300042
  • 收稿日期:2014-08-26 修回日期:2014-10-10 出版日期:2015-08-20
  • 作者简介:石小亮(1984~),男,博士研究生,主要从事森林资源与环境经济方面研究.E-mail:sxl422127@163.com
  • 基金资助:
    国家社科基金重点项目"我国西部林业生态建设政策评价与体系完善研究"(11&ZD042);内蒙古扎兰屯市"森林资源综合效益评估及环境资产负债表编制研究"(2014HXZXJGXY025)

STUDY ON WATER CONSERVATION FUNCTION OF TYPICAL FOREST VEGETATION IN YUNNAN PLATEAU

SHI Xiao1,2, ZHANG Ying1, SHAN Yong1, DUAN Wei3   

  1. 1. School of Economics and Management, Beijing Forestry University, Beijing 100083, China;
    2. College of Economics and Management, Shenyang Agricultural University, Shenyang 110866, China;
    3. Tianjin Land Resources and Housing Administrative Bureau, Tianjin 300042, China
  • Received:2014-08-26 Revised:2014-10-10 Online:2015-08-20
  • Contact: 张 颖 E-mail:zhangyin@bjfu.edu.cn E-mail:zhangyin@bjfu.edu.cn

摘要: 利用水量平衡原理对云南省高原3种典型森林植被的林冠截留、枯落物持水和土壤蓄水能力进行比较研究。结果表明:土壤蓄水是森林发挥涵养水源功能的最主要途径;从林冠截留量和截留率两个指标来看,林冠截水能力排序为高山松林(209.87 t/hm2、28.87%)>白桦林(194.17 t/hm2、19.82%)>川滇高山栎灌丛(111.78 t/hm2、16.32%);对于枯落物持水能力:最大持水量排序为高山松林(35.79 t/hm2)>白桦林(24.52 t/hm2)>川滇高山栎灌丛(18.49 t/hm2);最大持水率排序为川滇高山栎灌丛(177.42%)>白桦林(152.08%)>高山松林(138.48%);土壤蓄水能力排序为川滇高山栎灌丛(673.19 t/(hm2·a))>高山松林(610 t/(hm2·a))>白桦林(549.84 t/(hm2·a));在同一森林单位面积上,涵养水源能力排序为高山松林(855.66 t/hm2)>川滇高山栎灌丛(803.46 t/hm2)>白桦林(768.53 t/hm2)。研究可为森林生态效益核算和管理奠定基础,且对制定适应气候变化的策略有着科学指导意义。

关键词: 云南高原, 森林植被, 涵养水源, 森林类型

Abstract: Forest vegetation has various service functions, such as climate regulation, soil conservation, and nutrients accumulation, species conservation and water conservation. One of the most intuitive functions of forest vegetation was water conservation. Studies showed that various types of forest vegetation differed in their ability of water conservation. It has been receiving more attention due to the worsening global water environment and increasing human demand on water. Remote sensing images and meteorological data make it possible to accurately measure annual precipitation and evaporation of forest ecological system with the rapid development of geographic information system technology. All of these make the water balance method with a higher credibility than other methods to estimate physical quantity of forest water conservation. Three kinds of typical forest vegetation in Yunnan Plateau were selected as the research objects. By using the principle of water balance to study canopy interception, litter and soil water storage capacity of three kinds of forest vegetation. The results showed that the soil water storage was the main way of forest water conservation functions. According to the canopy intercept quantity and capture rate metrics about various of vegetation, the order of canopy intercepting water capacity is as follows: Pinus densata(209.87 t/hm2, 28.87%)>Betula platyphylla Suk.(194.17 t/hm2, 19.82%)>Quercus aquifolioides(111.78 t/hm2, 16.32%)Litter water-holding capacity included two aspects: maximizing water holding capacity and the water holdup. The order of maximum water holding capacity on litter is as follows: Pinus densata(35.79 t/hm2)>Betula platyphylla Suk.(24.52 t/hm2)>Quercus aquifolioides(18.49 t/hm2).The order of water holdup on litter was Quercus aquifolioides(177.42%)>Betula platyphylla Suk.(152.08%)>Pinus densata(138.48%).The order of soil water storage capacity was Quercus aquifolioides(673.19 t/hm2/a)>Pinus densata(610 t/hm2/a)>Betula platyphylla Suk.(549.84 t/hm2/a).The order of water conservation capacity is as follows: Pinus densata(855.66 t/hm2)>Quercus aquifolioides(803.46 t/hm2)>Betula platyphylla Suk.(768.53 t/hm2)in the same forest per unit area. The study on water conservation functions of typical forest vegetation in Yunnan plateau not only provides the guidance basis for the local forest management and production, but also ensure the water security of nature reserve and even in Yunnan Province. It is of very important significance under the background of climate change. Study forms the foundation to benefit accounting and management of forest ecological in the future. In addition, the research has scientific guiding significance for strategy adapt to climate change.

Key words: Yunnan plateau, forest vegetation, water conservation, forest types

中图分类号: 

  • S715
[1] BONAN G B.Ecological Climatology:Concepts and Applications[M].Oxford:Cambridge University Press,2008.
[2] 石小亮,张 颖,单永娟.云南省森林涵养水源价值核算[J].中国林业经济,2014(4):54-56.
[3] 李钦禄.不同类型植被的水土保持与涵养水源能力的探讨——以小良热带人工林为例[J].亚热带水土保持,2009,21(4):31-33.
[4] ANDREASSIAN V.Water and forests:from historical controversy to scientific debate[J].Journal of Hydrology,2004,291(2):1-27.
[5] PEAREE A J,STEWART M K,SKLASH M G.Storm runoff generation in humid headwater catchments.Where does the water come from[J].Water Resources Research,1986,22:1263-1272.
[6] 石小亮,张 颖.浅述森林生物多样性价值评估[J].中国人口·资源与环境,2014,24(11):164-167.
[7] 董茹茹.贺兰山西坡退牧还林封育工程水源涵养效益分析研究[D].呼和浩特:内蒙古农业大学硕士学位论文,2010.
[8] 李文华.生态系统服务功能价值评估的理论、方法与应用[M].北京:中国人民大学出版社,2008.
[9] 石小亮,张 颖.基于时空变域的森林生态系统管理研究概术[J].林业科技开发,2014,28(6):10-14.
[10] 刘京涛.岷江上游植被蒸散时空格局及其模拟研究[D].北京:中国林业科学研究院,2006.
[11] 邓坤枚,石培礼,谢高地.长江上游森林生态系统水源涵养量与价值的研究[J].资源科学,2002,24(6):68-73.
[12] 黄承标,罗保庭,杨钙仁,等.森林涵养水源功能及其生态补偿机制构建——以广西大瑶山自然保护区为例[J].安徽农业科学,2008,36(20):8599-8601,8627.
[13] 余新晓,周 彬,吕锡芝,等.基于InVEST模型的北京山区森林水源涵养功能评估[J].林业科学,2012,48(10):1-5.
[14] 张海博.基于SEBS与SCS模型的区域水源涵养量估算研究——以北京北部山区为例[D].北京:中国环境科学研究院,2012.
[15] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,2000:296-336.
[16] 周 祥.云南纳帕海典型森林水文生态功能研究[D].北京林业大学,2011.
[17] 赵崇俨,李小英.澜沧江中游不同林分土壤特性及水源涵养功能研究[J].绿色科技,2013(5):1-4.
[18] 温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析[J].林业科学,1995,31(4):289-298.
[19] 郭明春,王彦辉,于澎涛.森林水文学研究述评[J].世界林业研究,2005,18(3):6-11.
[20] 程良爽.岷江上游山地森林/干旱河谷交错带不同植被水源涵养效益[J].四川农业大学,2010.
[21] 孔 亮.黑龙江省东部山地灌木林水源涵养机理及功能评价[D].长春:东北林业大学,2005.
[22] DUNNE T.Field studies of hillslope flow processes[M]//KIRKBY M J (ed.).Hillslope Hydrology.New York:Wiley-Inter science,1978:227-293.
[23] ZHANG J F,FANG M Y,et al.Developing agroforestry in slope lands to combat non-point pollution in China[J].Chinese Forestry Science and Technology,2007,6(4):67-72.
[24] MA T,ZHOU C H,CAI Q G.Modeling of hills lope run off and soil erosion at rain fall events using cellular automata approach[J].Soil Science Society of China,2009,19(6):711-718.
[25] 陈 波,孟成生,赵耀新,等.冀北山地不同海拔华北落叶松人工林枯落物和土壤水文效应[J].水土保持学报,2012,26(3):216-221.
[26] PABLO R R P R,DALPON TE DIEGO D,VENERE M J,et al.Cellular automata algorithm for simulation of surface flow s in large plains[J].Simulation Modelling Practice and Theory,2007,15:315-327.
[27] 王晓学,李叙勇,莫 菲,等.基于元胞自动机的森林水源涵养量模型新方法——概念与理论框架[J].生态学报,2010,30(20):5491-5500.
[28] ZHAO D S,WU S H,YIN Y H,et al.Vegetation distribution on Tibetan Plateau under climate change scenario[J].Regional Environmental Change,2011,11(4):905-915.
[29] 尹云鹤,吴绍洪,赵东升,等.1981-2010年气候变化对青藏高原实际蒸散的影响[J].地理学报,2012,67(11):1471-1481.
[30] 尹云鹤,吴绍洪,李华友,等.SRES情景下青藏高原生态功能保护区水源涵养功能的变化研究[J].资源科学,2013,35(10):2003-2010.
[1] 于法展, 张忠启, 陈龙乾, 沈正平. 庐山不同森林植被类型土壤特性及其健康评价[J]. 长江流域资源与环境, 2016, 25(07): 1062-1069.
[2] 于法展, 张忠启, 陈龙乾, 沈正平. 庐山不同森林植被类型土壤碳库管理指数评价[J]. 长江流域资源与环境, 2016, 25(03): 470-475.
[3] 王鹏程, 姚, 婧, 肖文发, 张守攻, 黄志霖, 曾立雄, 潘, 磊. 三峡库区森林植被分布的地形分异特征[J]. 长江流域资源与环境, 2009, 18(6): 528-.
[4] 李贵祥,孟广涛,方向京,郭立群,柴 勇,和丽萍,张正海. 云南金沙江流域主要森林植被类型分布格局[J]. 长江流域资源与环境, 2008, 17(1): 51-51.
[5] 李贵祥,孟广涛,方向京,郭立群,柴 勇,和丽萍,张正海. 云南金沙江流域主要森林植被类型分布格局[J]. 长江流域资源与环境, 2008, 17(1): 51-51.
[6] 陈亮中,谢宝元,肖文发,黄志霖. 三峡库区主要森林植被类型土壤有机碳贮量研究[J]. 长江流域资源与环境, 2007, 16(5): 640-640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[4] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[5] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[6] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[7] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[8] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[9] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .