长江流域资源与环境 >> 2015, Vol. 24 >> Issue (09): 1545-1551.doi: 10.11870/cjlyzyyhj201509015

• 生态环境 • 上一篇    下一篇

崇明东滩围垦区芦苇湿地土壤盐分动态研究

周剑虹1,2, 王江涛1,2, 欧强1,2, 仲启铖3, 王开运1,2, 姜楠1,2, 李艳1,2   

  1. 1. 华东师范大学生态与环境科学学院, 上海 200241;
    2. 上海市城市化生态过程与生态恢复重点实验室, 上海 200241;
    3. 中国水产科学研究院东海水产研究所盐碱地渔业工程技术研究中心, 上海 200090
  • 收稿日期:2014-11-19 修回日期:2015-03-19 出版日期:2015-09-20
  • 作者简介:周剑虹(1990~),女,硕士研究生,主要从事湿地生态学方面的研究.E-mail:jianhood-005@163.com
  • 基金资助:
    上海市科委项目《崇明重要生态系统监测数据管理关键技术研究》(11dz1210903)

Soil salinity fluctuations on enclosed tideland of chong-ming dong-tan wetland

ZHOU Jian-hong1,2, WANG Jiang-tao1,2, OU Qiang1,2, ZHONG Qi-cheng3, WANG Kai-yun1,2, JIANG Nan1,2, LI Yan1,2   

  1. 1. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China;
    2. Key Laboratory of Urban Ecology and Restoration, Shanghai 200241, China;
    3. Research Center for Saline-alkali Water Fisheries Technology, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200901, China
  • Received:2014-11-19 Revised:2015-03-19 Online:2015-09-20
  • Contact: 王开运,E-mail:kywang@re.ecnu.edu.cn E-mail:kywang@re.ecnu.edu.cn

摘要: 2009~2013年对崇明东滩围垦区芦苇湿地10 cm和30 cm两个土层的土壤溶液电导率、水分、温度和相关微气象因子进行了为期5 a的原位同步连续监测,探讨了不同时间尺度的湿地土壤盐分动态。结果如下:(1)在年际动态方面,10 cm土层的土壤溶液电导率在5 a间逐年递减,年均降低8.10%,30 cm土层的土壤溶液电导率在前4 a逐年递减,年均降低6.06%,但2013年较2012年上升了16.34%。各个年份10 cm土层的土壤溶液电导率均值皆显著低于30 cm土层,且年均值的差异逐年递增。(2)在季节动态方面,各年份内,两个土层的土壤溶液电导率多表现为春、夏、秋升高,冬季下降的趋势,也多在秋季和冬季分别达到最大值和最小值。各年份间,10 cm土层春季和夏季以及30 cm土层春季的土壤溶液电导率呈逐年递减的趋势。(3)在日动态方面, 10 cm土层的土壤溶液电导率波动幅度大于30 cm土层,并且30 cm土层土壤溶液电导率日最大值和最小值出现的时刻较10 cm土层有一定的滞后性。综上所述,研究区在围垦后,耕层土壤每年都能以一定的速率脱盐,但在季节性气候影响下,严重的返盐现象仍可能在秋季发生,因而在秋季可以通过增加人工措施以防止土壤返盐。

关键词: 崇明东滩, 围垦区, 土壤溶液电导率, 长期连续监测

Abstract: We investigated the fluctuation of soil salinity in an enclosed tideland located in the east of Chongming Island. The soil solution electrical conductivity has been monitored at the depth of 10 cm and 30 cm below the ground for 5 years (from 2009 to 2013). The results are as follow: 1) annual fluctuation of soil salinity showed that there was a large yearly fluctuation of soil salinity. The annual average salinity at the 10 cm depth decreased by 8.31% each year during the last 5 years. At the 30 cm depth, the annual average salinity decreased by 6.06% each year during the first 4 years whereas the annual average salinity has significantly increased by 16.34% in the last year. The soil salinity at the 10 cm depth was significantly lower than the soil salinity at the 30 cm depth and the difference between them has increased with years. 2) The seasonal fluctuation showed that there was a significant difference among seasons every year. In general, the soil salinity tended to increase in spring, summer and autumn, then decrease in winter. This tendency resulted in the peak of soil salinity in autumn and the bottom of soil salinity in winter. Especially, the soil salinity at the 30 cm depth rose to the maximum among those five years in the autumn of 2013. Furthermore, the soil salinity in spring and summer at the 10 cm depth has decreased year by year while only the soil salinity in spring at the 30 cm depth has declined in the same patterns. 3) The daily fluctuation showed that the soil salinity at 10 cm depth has changed more intensively than the soil salinity at the 30 cm depth. The soil salinity at 30 cm depth appeared a time lag of daily minimum and maximum compared with the soil salinity at 10 cm depth. In conclusion, the topsoil salinity of our monitoring area tended to decrease to some extent every year after it had been diked. However, the phenomenon of severe salt accumulation could occur in autumn by the influence of seasonal climate. It implied that the salinity of the water table could still be high and it had better to take some measures in autumn to prevent the salt in the lower soil layer moving up.

Key words: Chong-ming Dong-tan, reclamation area, soil solution electrical conductivity, long-term monitoring

中图分类号: 

  • S156.4+1
[1] 龚瑞萍,崔 慈.崇明三岛滩涂围垦现状与可持续发展[J].上海建设科技,2012(1):56-57,63.
[2] 陈 君,张长宽,林 康,等.江苏沿海滩涂资源围垦开发利用研究[J].河海大学学报(自然科学版),2011,39(2):213-219.
[3] 葛振鸣,王天厚,施文彧,等.崇明东滩围垦堤内植被快速次生演替特征[J].应用生态学报,2005,16(9):1677-1681.
[4] 巩晋楠,王开运,张 超,等.围垦滩涂湿地旱生耐盐植物的入侵和影响[J].应用生态学报,2009,20(1):33-39.
[5] CUI J, LIU C, LI Z L, et al. Long-term changes in topsoil chemical properties under centuries of cultivation after reclamation of coastal wetlands in the Yangtze Estuary, China[J]. Soil and Tillage Research, 2012, 123(5): 50-60.
[6] SUN Y G, LI X Z, MANDER V, et al. Effect of reclamation time and land use on soil properties in Changjiang River Estuary, China[J]. Chinese Geographical Science, 2011, 21(4): 403-416.
[7] 王 璐,仲启铖,陆 颖,等.群落配置对滨海围垦区土壤理化性质的影响[J].土壤学报,2014,51(31):638-647.
[8] HE B, CAI Y L, RAN W R, et al. Spatial and seasonal variations of soil salinity following vegetation restoration in coastal saline land in eastern China[J]. Catena, 2014, 118: 147-153.
[9] 刘广明,彭世彰,杨劲松.不同控制灌溉方式下稻田土壤盐分动态变化研究[J].农业工程学报,2007,23(7):86-89.
[10] 马文梅,王 静,曲 东,等.天津市塘沽区不同土地利用状况下土壤盐分变化特征[J].西北农业学报,2011,20(12):152-157.
[11] BEZBORODOV G A, SHADMANOV D K, MIRHASHIMOV R T, et al. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia[J]. Agriculture, Ecosystems & Environment, 2010, 138(1/2): 95-102.
[12] 陈清硕.崇明岛的土壤及合理利用[J].土壤通报,1986(4):145-148.
[13] 眭丽华,胡敦华.崇明岛滩涂土壤的形成特点与开发利用意见[J].上海农业学报,1989,5(1):91-96.
[14] 杨淑慧.不同管理措施对长江口芦苇群落土壤呼吸及生长、生理的影响[D].上海:华东师范大学,2012:1-60.
[15] 蒋贵其.湿地盐碱土能种树[J].园林,2006(10):34-35.
[16] HARVEY J W, GERMANN P F, ODUM W E. Geomorphological control of subsurface hydrology in the creekbank zone of tidal marshes[J]. Estuarine, Coastal and Shelf Science, 1987, 25(6): 677-691.
[17] 王开运,张利权.长江口生态系统修复技术和决策管理[M].北京:科学出版社,2013:103-200.
[18] 孙 博,解建仓,汪 妮,等.芦苇对盐碱地盐分富集及改良效应的影响[J].水土保持学报,2012,26(3):92-96,101.
[19] 尹建道,姜志林,曹 斌,等.滨海盐渍土脱盐动态规律及其效果评价——野外灌水脱盐模拟实验研究[J].南京林业大学学报(自然科学版),2002,26(4):15-18.
[20] SWARZENSKI C M, SWENSON E M. Effect of Mat Movement on Soil Salinity Fluctuations in Some Coastal Louisiana Marshes[J]. Estuarine, Coastal and Shelf Science, 1994, 39(2): 143-156.
[21] 孙 博,解建仓,汪 妮,等.秸秆覆盖对盐渍化土壤水盐动态的影响[J].干旱地区农业研究,2011,29(4):180-184.
[22] 徐力刚,杨劲松,张妙仙,等.作物种植条件下的土壤水盐动态变化研究[J].土壤通报,2003,34(3):170-174.
[1] 布乃顺, 王坤, 侯玉乐, 李钢, 齐淑娟, 方长明, 渠俊峰. 半月周期的潮汐对滨海湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2015, 24(11): 1898-1905.
[2] 况润元 周云轩 李行 田波. 崇明东滩鸟类生境适宜性空间模糊评价[J]. 长江流域资源与环境, 2009, 18(3): 229-233.
[3] 何小勤, 戴雪荣, 顾成军. 崇明东滩不同部位的季节性沉积研究[J]. 长江流域资源与环境, 2009, 18(2): 157-.
[4] 郑宗生, 周云轩, 刘志国, 田 波. 基于水动力模型及遥感水边线方法的潮滩高程反演[J]. 长江流域资源与环境, 2008, 17(5): 756-756.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .