长江流域资源与环境 >> 2015, Vol. 24 >> Issue (09): 1552-1559.doi: 10.11870/cjlyzyyhj201509016

• 生态环境 • 上一篇    下一篇

沿海滩涂垦殖对土壤氮总转化速率的影响分析

赵新新1, 金晓斌1, 杜心栋1, 周寅康1, 刘海玲2   

  1. 1. 南京大学地理与海洋科学学院, 江苏 南京 210023;
    2. 日照市国土资源局, 山东 日照 276826
  • 收稿日期:2014-12-09 修回日期:2015-01-20 出版日期:2015-09-20
  • 作者简介:赵新新(1988~),女,硕士研究生,主要从事土地利用方向研究.E-mail:xinxingzy@163.com
  • 基金资助:
    江苏省自然科学基金(BK2012731)

Study on nitrogen transformation rates after coastal beach reclamation

ZHAO Xin-xin1, JIN Xiao-bin1, DU Xin-dong1, ZHOU Yin-kang1, LIU Hai-ling2   

  1. 1. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China;
    2. Land Resources Bureau of Rizhao, Rizhao 276826, China
  • Received:2014-12-09 Revised:2015-01-20 Online:2015-09-20
  • Contact: 金晓斌,E-mail:jinxb@nju.edu.cn E-mail:jinxb@nju.edu.cn

摘要: 滩涂湿地在吸收、转化和滞留氮、磷等营养元素方面具有重要功能。选取江苏东部沿海典型滩涂区,分别对垦殖时间为0、3、6、17、30、60 a的沿海滩涂进行采样,对相应的土壤氮总转化速率指标进行实验测定。结果表明,滩涂垦殖后,表征氮素活化过程的指标,如总矿化率、总硝化率、净矿化率和净硝化率等有所增加,而有利于氮固持的铵态氮同化率指标无显著变化,硝态氮同化率指标变慢;围垦期限超过30 a后,各氮总转化速率指标渐趋稳定。相关性分析表明,净矿化率、总矿化率、铵态氮同化率、净硝化率、总硝化率与围垦年限呈显著正相关(p<0.01),相关性系数分别为0.966、0.929、0.819、0.800、0.798;硝态氮同化率与围垦年限呈显著负相关(p<0.01),相关性系数为-0.685;除铵态氮外,全氮、硝态氮、pH值、有机碳均与各氮总转化速率指标呈显著相关关系(p<0.01)。滩涂垦殖后土壤理化性质指标的改变带来土壤氮总转化速率的变化,一定程度上破坏了土壤氮生态系统平衡。

关键词: 滩涂垦殖, 氮总转化速率, 垦殖年限, 理化性质

Abstract: Nitrogen cycle system is an important part of the material recycling of ecosystem and plays an important role in the ecological balance and the sustainable development of the human environment. Beach wetland is the transitional zone between land and marine ecosystems and is the buffer responding to the environmental change. It not only has an important function in absorption of nitrogen, phosphorus and other nutrients, but also plays a significant role in transformation and retention of those nutrients. However, with the recent rapid development of industry and agriculture, and the expanding coastal beach reclamation and heavy use of nitrogen fertilizer, the tidal wetland ecosystem has been destroyed to some extent. It's a serious threat to the nitrogen cycle system and to the ecological balance. Therefore, it's necessary to do some research in nitrogen transformation and transformation law after beach reclamation. In this paper we sampled over the beach wetlands of different reclamation ages. The selected reclamation ages are 0 a, 3 a, 6 a, 17 a, 30 a and 60 a. After samplings, we had experiments over these soils and then obtained corresponding gross nitrogen transformation rates. The results showed that the indicators representing nitrogen activations such as gross mineralization, nitrification, net mineralization and net nitrification rates accelerated after reclamation, while the ammonium assimilation rate that was beneficial to nitrogen retention had no significant change and the nitrate assimilation rate slowed down. All the nitrogen transformation rates became stabilized after the reclamation year 30 a. The correlation analysis showed that, the degree of correlation between soil gross nitrogen transformation rates and reclamation age was net mineralization> gross mineralization> ammonium assimilation > net nitrification> gross nitrification> nitrate assimilation (p<0.01). Among them, the soil gross mineralization rate, gross nitrification rate, ammonium assimilation rate, net mineralization, and net nitrification rate had significantly positive correlations with reclamation age. The correlation coefficients were 0.929, 0.798, 0.819, 0.966 and 0.800, respectively. However, the nitrate assimilation rate had a significantly negative correlation with reclamation age, and the correlation coefficient was -0.685. We also find that the total nitrogen, nitrate, pH and organic carbon had significantly correlation with gross nitrogen transformation rates (p<0.01), while the ammonium's correlation with gross nitrogen transformation rates was not so obvious (p<0.01).The beach reclamation brings changes over soil properties such as total nitrogen, nitrate, pH, organic carbon factors and so on. Then, these changes bring diversifications over various gross nitrogen transformation rates such as gross mineralization, nitrification, ammonium assimilation rate, nitrate assimilation rate and so on. However, all the changes will cause the nitrogen loss and simultaneously destruct the soil nitrogen ecosystem balance. Beach reclamation process is one of the factors leading eutrophication of coastal water. Therefore, it's necessary to respect and comply with soil nitrogen cycling and transformation law when we try to utilize them.

Key words: beach reclamation, gross nitrogen transformation rate, reclamation age, physical and chemical properties

中图分类号: 

  • K903
[1] SOMMER M. Influence of soil pattern on matter transport in and from terrestrial biogeosystems-A new concept for landscape pedology[J]. Geoderma, 2006, 133(1/2): 107-123.
[2] 丁 洪,蔡贵信,王跃思,等.玉米-小麦轮作系统中氮肥反硝化损失与N2O排放量[J].农业环境科学学报,2003,22(5):557-560.
[3] MENG L, DING W X, CAI Z C. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil[J]. Soil Biology & Biochemistry, 2005, 37(11): 2037-2045.
[4] DING W X, YAGI K, CAI Z C, et al. Impact of long-term application of fertilizers on N2O and NO production potential in an intensively cultivated sandy loam soil[J]. Water, Air, Soil & Pollution, 2010, 212(1/4): 141-153.
[5] 王维奇,曾从盛,钟春棋,等.人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J].环境科学,2010,31(10):2411-2416.
[6] 吕学军,陈印平,刘 庆.黄河三角洲土地利用对土壤氮素及其转化的影响[J].水土保持通报,2011,31(4):78-81.
[7] WANG C H, WAN S Q, XING X R, et al. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China[J]. Soil Biology & Biochemistry, 2006, 38(5): 1101-1110.
[8] DORGE J. Modelling nitrogen transformations in freshwater wetlands. Estimating nitrogen retention and removal in natural wetlands in relation to their hydrology and nutrient loadings[J]. Ecological Model, 1994, 75-76: 409-420.
[9] DOWNING J A, MCCLAIN M, TWILLEY R, et al. The impact of accelerating land-use change on the N-Cycle of tropical aquatic ecosystems: Current conditions and projected changes[J]. Biogeochemistry, 1999, 46(1/3): 109-148.
[10] 李占玲,陈飞星,李占杰,等.滩涂湿地围垦前后服务功能的效益分析——以上虞市世纪丘滩涂为例[J].海洋科学,2004,28(8):76-80.
[11] 白军红,李晓文,崔保山,等.湿地土壤氮素研究概述[J].土壤,2006,38(2):143-147.
[12] 黄锦楼,王如松,阳文锐,等.基于生态服务功能的大丰市海岸带滩涂土地的开发与利用[J].安徽农业科学,2008,36(21):9215-9218.
[13] VITOUSEK P M, HOWARTH R W. Nitrogen limitation on land and in the sea: how can it occur?[J]. Biogeochemistry, 1991, 13(2): 87-115.
[14] GALLOWAY J N, SCHLESINGER W H, LEVY Ⅱ H, et al. Nitrogen fixation: anthropogenic enhancement-environmental response[J]. Global Biogeochemical Cycles, 1995, 9(2): 235-252.
[15] WEDIN D A, TILMAN D. Influence of nitrogen loading and species composition on the carbon balance of grasslands[J]. Science, 1996, 274(5293): 1720-1723.
[16] MITSCH W J, GOSSELIN J G Wetlands[M]. New York: Van Nostrand Reinhold Company Inc, 2000: 89-125.
[17] 陆安祥,赵云龙,王纪华,等.不同土地利用类型下氮、磷在土壤剖面中的分布特征[J].生态学报,2007,27(9):3923-3929.
[18] 黄靖宇,宋长春,宋艳宇,等.湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J].环境科学,2008,29(5):1380-1387.
[19] 周念清,王 燕,钱家忠,等.湿地氮循环及其对环境变化影响研究进展[J].同济大学学报,2010,38(6):865-869.
[20] AULAKH M S, DORAN J W, MOSIER A R. Soil denitrification-significance, measurement, and effects of management[M]//STEWART B A. Advances in Soil Science. New York: Springer, 1992, 18: 1-57.
[21] STRAUSS E A, DODDS W K. Influence of protozoa and nutrient availability on nitrification rates in subsurface sediments[J]. Microbial Ecology, 1997, 34(2): 155-165.
[22] BIANCHI M, FELIATRA, LEFEVRE D. Regulation of nitrification in the land-ocean contact area of the Rhône river plume (NW Mediterranean)[J]. Aquatic Microbial Ecology, 1999, 18: 301-312.
[23] ERIKSSON P G, SVENSSON J M, CARRER G M. Temporal changes and spatial variation of soil oxygen consumption, nitrification and denitrification rates in a tidal salt marsh of the Lagoon of Venice, Italy[J]. Estuarine, Coastal and Shelf Science, 2003, 58(4): 861-871.
[24] 孙 丽,宋长春,黄 耀.沼泽湿地N2O通量特征及N2O与CO2排放间的关系[J].中国环境科学,2006,26(5):532-536.
[25] 缪绅裕,陈桂珠.模拟湿地系统中土壤氮磷释放的动态研究[J].生态科学,1998,17(2):24-28.
[26] 曲向荣,贾宏宇,张海荣,等.辽东湾芦苇湿地对陆源营养物质净化作用的初步研究[J].应用生态学报,2000,11(2):270-272.
[27] 白军红,邓 伟,朱颜明,等.湿地土壤有机质和全氮含量分布特征对比研究——以向海与科尔沁自然保护区为例[J].地理科学,2002,22(2):232-237.
[28] 白军红,邓 伟,朱颜明,等.水陆交错带土壤氮素空间分异规律研究——以月亮泡水陆交错带为例[J].环境科学学报,2002,22(3):343-348.
[29] 罗宏宇,黄 方,张养贞.辽河三角洲沼泽湿地时空变化及其生态效应[J].东北师范大学学报自然科学版,2003,35(2):100-105.
[30] 张虎成,俞穆清,田 卫,等.人工湿地生态系统中氮的净化机理及其影响因素研究进展[J].干旱区资源与环境,2004,18(4):163-168.
[31] 张 俊,徐绍辉,刘建立,等.农田生态系统中氮循环模型研究进展[J].灌溉排水学报,2006,25(3):85-88.
[32] 王晓娟,张荣社.人工湿地微生物硝化和反硝化强度对比研究[J].环境科学学报,2006,26(2):225-229.
[33] 黄钰铃,罗广成,李 靖.人工湿地生态系统氮循环试验研究[J].灌溉排水学报,2007,26(4):93-97.
[34] 马欣欣,王中良.湿地氮循环过程及其研究进展[J].安徽农业科学,2012,40(17):9454-9458.
[35] 程 谊,蔡祖聪,张金波.15N同位素稀释法测定土壤氮素总转化速率研究进展[J].土壤,2009,41(2):165-171.
[36] DI H J, CAMERON K C, MCLAREN R G. Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil: a review of the theory, methodologies, and limitations[J]. Australian Journal of Soil Research, 2000, 38(1): 213-230.
[37] RVTTING T, MVLLER C. 15N tracing models with a Monte Carlo optimization procedure provide new insights on gross N transformations in soils[J]. Soil Biology & Biochemistry, 2007, 39(9): 2351-2361.
[38] 兰 婷,韩 勇,唐昊冶.采用15N同位素稀释法研究不同层次土壤氮素总转化速率[J].土壤,2011,43(2):153-160.
[39] HART S C, NASON G E, MYROLD D D, et al. Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection[J]. Ecology, 1994, 75(4): 880-891.
[40] KIRKHAM D, BARTHOLOMEW W V. Equations for following nutrient transformations in soil, utilizing tracer data[J]. Soil Science Society of America Journal, 1954, 18(1): 33-34.
[41] MARY B, RECOUS S, ROBIN D. A model for calculating nitrogen fluxes in soil using 15N tracing[J]. Soil Biology & Biochemistry, 1998, 30(14): 1963-1979.
[1] 布乃顺, 胡悦, 杨骁, 张雪, 王俭, 李博, 方长明, 宋有涛. 互花米草入侵对长江河口湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2017, 26(01): 100-109.
[2] 布乃顺, 王坤, 侯玉乐, 李钢, 齐淑娟, 方长明, 渠俊峰. 半月周期的潮汐对滨海湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2015, 24(11): 1898-1905.
[3] 李 生,张守攻,姚小华,任华东. 黔中石漠化地区不同土地利用方式对土壤环境的影响[J]. 长江流域资源与环境, 2008, 17(3): 384-384.
[4] 金相灿,孟凡德,姜 霞,王晓燕,庞 燕. 太湖东北部沉积物理化特征及磷赋存形态研究[J]. 长江流域资源与环境, 2006, 15(3): 388-393.
[5] 王海英,宫渊波,陈林武. 不同植被恢复模式下土壤微生物及酶活性的比较——以嘉陵江上游地区为例[J]. 长江流域资源与环境, 2006, 15(2): 201-206.
[6] 田胜尼, 孙庆业, 王铮峰, 彭少麟, 夏汉平. 铜陵铜尾矿废弃地定居植物及基质理化性质的变化[J]. 长江流域资源与环境, 2005, 14(1): 88-93.
[7] 杨世勇, 谢建春, 刘登义. 铜陵铜尾矿复垦现状及植物在铜尾矿上的定居[J]. 长江流域资源与环境, 2004, 13(5): 488-493.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕东亮. 汉江水质优于长江的原因刍议[J]. 长江流域资源与环境, 2006, 15(Sup1): 102 -104 .
[2] 任雪梅,徐永辉,周 彬,杨达源. 宜宾—重庆段川江高阶地物质来源的定量分析——判别分析在重矿物分析中的应用[J]. 长江流域资源与环境, 2006, 15(3): 330 -334 .
[3] 彭刚华,黄良英. 长江水质评价和预测模型探讨[J]. 长江流域资源与环境, 2006, 15(Sup1): 77 -82 .
[4] 张 雷,吴映梅. 长江干流地区区域发展与国家工业化[J]. 长江流域资源与环境, 2005, 14(5): 633 -637 .
[5] 魏 伟,周 婕,许 峰. 大城市边缘区土地利用时空格局模拟——以武汉市洪山区为例[J]. 长江流域资源与环境, 2006, 15(2): 174 -179 .
[6] 徐天宝, 彭静, 李翀. 葛洲坝水利工程对长江中游生态水文特征的影响[J]. 长江流域资源与环境, 2007, 16(1): 72 -75 .
[7] 王红娟,姜加虎,黄 群. 东洞庭湖湿地景观变化研究[J]. 长江流域资源与环境, 2007, 16(6): 732 .
[8] 罗小龙, 陈雯, 金志丰. 南京城郊结合部拓展的机制、问题与对策[J]. 长江流域资源与环境, 2008, 17(2): 175 .
[9] 蒲志仲. 水资源所有权问题研究[J]. 长江流域资源与环境, 2008, 17(4): 561 .
[10] 李友辉,董增川,孔琼菊. 廖坊水利工程对抚河流域生态承载力的影响分析[J]. 长江流域资源与环境, 2008, 17(1): 148 .