长江流域资源与环境 >> 2015, Vol. 24 >> Issue (11): 1961-1968.doi: 10.11870/cjlyzyyhj201511021

• 生态环境 • 上一篇    下一篇

土壤物理质量指标研究进展及在矿区环境中的应用展望

杨德军, 雷少刚, 卞正富, 牟守国   

  1. 中国矿业大学环境与测绘学院, 江苏 徐州 221116
  • 收稿日期:2014-11-28 修回日期:2015-04-22 出版日期:2015-11-20
  • 通讯作者: 雷少刚,E-mail:lsgang@126.com E-mail:lsgang@126.com
  • 作者简介:杨德军(1981~),男,副教授,博士后,主要从事环境工程方面研究.E-mail:yangdj81@163.com
  • 基金资助:
    国家自然科学基金重点项目(U1361214);国家重点基础研究发展计划(973)项目(2013CB227904)

A REVIEW OF THE PROGRESS IN THE RESEARCH ON SOIL PHYSICAL QUALITY INDICATOR AND ITS APPLICATION IN THE MINING AREA ENVIRONMENT

YANG De-jun, LEI Shao-gang, BIAN Zheng-fu, MU Shou-guo   

  1. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
  • Received:2014-11-28 Revised:2015-04-22 Online:2015-11-20

摘要: 对土壤物理质量指标在国内外的研究进展进行了系统总结,在矿区环境中的应用进行了展望,构建了矿区环境土壤物理质量指标体系。常规指标的研究集中于耕作或人为干扰对指标影响的定量研究及物理、化学和生物学指标的相互影响。国外提出并应用了许多非常规指标来对土壤物理质量进行评价,结合常规指标,可以对自然或人为扰动情况下,土壤损伤及退化问题进行深入研究。采煤沉陷对土壤物理质量的影响是一个系统和复杂的过程,我国矿区土壤环境的研究,应该基于不同的研究目的,选择正确的常规和非常规指标来对矿区土壤物理质量进行系统的评价、表征及定量化。构建的矿区环境土壤物理质量指标体系,具有一定的参考和应用价值。

关键词: 土壤物理质量, 土壤物理质量指标, 土壤水分特征曲线, 土壤含水率, 矿山环境, 开采沉陷, 土壤退化

Abstract: In this paper, we summarized research progress of indicator of soil physical quality systematically and its application prospect in mine area environment, and built indicator system of soil physical quality for mine area environment. The main conclusions and suggestions are as following: Much attentions were paid on quantitative research of usual indicators by tillage and human disturbance, and mutual influences among physical, chemical and biological indicators. Scientists overseas introduced and adopted many unusual indicators to evaluate soil physical quality. The unusual indicators, combined with the usual indicators, can be used to conduct deeper research on soil damage and degradation by tillage and human disturbance. Influences on soil physical quality by mining subsidence is a systemic and complicated process, thus, research on soil for mine area environment in China should be based on different purposes to choose the right usual and unusual indicators to systematically evaluate, characterize and quantify soil physical quality in mine area environment. The indicator system of soil physical quality for mine area environment in this paper has certain reference and application values.

Key words: soil physical quality, indicator of soil physical quality, soil water retention curve, soil water content, mine environment, mining subsidence, soil degradation

中图分类号: 

  • TD167
[1] DORAN J W, PARKIN T B. Defining and assessing soil quality[M]//DORAN J W, ed. Defining Soil Quality for a Sustainable Environment. Madison Wisconsin, USA: SSSA and ASA, 1994: 3-21.
[2] KARLEN D L, MAUSBACH M J, DORAN J W, et al. Soil quality: A concept, definition, and framework for evaluation[J]. Soil Science Society of America Journal, 1997, 61(1): 4-10.
[3] DEXTER A R. Soil physical quality[J]. Soil and Tillage Research, 2004, 79(2): 129-130.
[4] DEXTER A R. Soil physical quality: Part 1. Theory, effects of soil texture, density, and organic matter, and effects on root growth[J]. Geoderma, 2004, 120(3/4): 201-214.
[5] REYNOLDS W D, DRURY C F, YANG X M, et al. Optimal soil physical quality inferred through structural regression and parameter interactions[J]. Geoderma, 2008, 146(3/4): 466-474.
[6] REYNOLDS W D, DRURY C F, YANG X M, et al. Land management effects on the near-surface physical quality of a clay loam soil[J]. Soil and Tillage Research, 2007, 96(1/2): 316-330.
[7] TORMENA C A, DA SILVA A P, IMHOFF S D C, et al. Quantification of the soil physical quality of a tropical oxisol using the S index[J]. Scientia Agricola, 2008, 65(1): 56-60.
[8] DREWRY J J, CAMERON K C, BUCHAN G D. Pasture yield and soil physical property responses to soil compaction from treading and grazing-a review[J]. Soil Research, 2008, 46(3): 237-256.
[9] MUELLER L, KAY B D, BEEN B, et al. Visual assessment of soil structure: Part II. Implications of tillage, rotation and traffic on sites in Canada, China and Germany[J]. Soil and Tillage Research, 2009, 103(1): 188-196.
[10] 杨瑞吉,杨祁峰,牛俊义.表征土壤肥力主要指标的研究进展[J].甘肃农业大学学报,2004,39(1):86-91.
[11] 许明祥,刘国彬,赵允格.黄土丘陵区土壤质量评价指标研究[J].应用生态学报,2005,16(10):1843-1848.
[12] 罗珠珠,黄高宝,蔡立群,等.黄土高原旱地土壤质量评价指标研究[J].中国生态农业学报,2012,20(2):127-137.
[13] 李 强,许明祥,赵允格,等.黄土高原坡耕地沟蚀土壤质量评价[J].自然资源学报,2012,27(6):1001-1012.
[14] 杨 越,哈 斯,孙保平,等.植被恢复类型对土壤物理性质的影响研究[J].灌溉排水学报,2012,31(1):15-18.
[15] 巩文峰,李玲玲,张晓萍,等.保护性耕作对黄土高原旱地表层土壤理化性质变化的影响[J].中国农学通报,2013,29(32):280-285.
[16] 李民义,张建军,王春香,等.晋西黄土区不同土地利用方式对土壤物理性质的影响[J].水土保持学报,2013,27(3):125-132.
[17] 赵其国,孙 波,张桃林.土壤质量与持续环境Ⅰ.土壤质量的定义及评价方法[J].土壤,1997(3):113-120.
[18] 黄 勇,杨忠芳.土壤质量评价国外研究进展[J].地质通报,2009,28(1):130-136.
[19] 张仁陟,罗珠珠,蔡立群,等.长期保护性耕作对黄土高原旱地土壤物理质量的影响[J].草业学报,2011,20(4):1-10.
[20] LARSON W E, PIEREE F J. Conservation and enhancement of soil quality[C]//Evaluation for Sustainable Land Management in the Developing World. Bangkok, Thailand: International Board for soil Resource and Management (IBSRAM), 1991: 175-203.
[21] DITZLER C A, TUGEL A J. Soil quality field tools: experiences of US-DA-NRCS soil quality institute[J]. Agronomy Journal, 2002, 94(1): 33-38.
[22] LOGSDON S D, KARLEN D L. Bulk density as a soil quality indicator during conversion to no-tillage[J]. Soil and Tillage Research, 2004, 78(2): 143-149.
[23] MORARI F, LUGATO E, Giardini L. Olsen phosphorus, exchangeable cations and salinity in two long-term experiments of north-eastern Italy and assessment of soil quality evolution[J]. Agriculture, Ecosysytems and Environment, 2008, 124(1/2): 85-96.
[24] 张希彪,上官周平.人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J].生态学报,2006,26(11):3685-3695.
[25] SCHOENHOLTZ S H, MIEGROET H V, BURGER J A. A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities[J]. Forest Ecology and Management, 2000, 138(1/3): 335-356.
[26] APARICIO V, COSTA J L. Soil quality indicators under continuous cropping systems in the Argentinean Pampas[J]. Soil and Tillage Research, 2007, 96(1/2): 155-165.
[27] IMAZ M J, VIRTO I, BESCANSA P, et al. Soil quality indicator response to tillage and residue management on semi-arid Mediterranean cropland[J]. Soil and Tillage Research, 2010, 107(1): 17-25.
[28] SHAHAB H, EMAMI H, HAGHNIA G H, et al. Pore size distribution as a soil physical quality index for agricultural and pasture soils in northeastern Iran[J]. Pedosphere, 2013, 23(3): 312-320.
[29] MOTA J C A, ALVES C V O, FREIRE A G, et al. Uni and multivariate analyses of soil physical quality indicators of a Cambisol from Apodi Plateau-CE, Brazil[J]. Soil and Tillage Research, 2014, 140: 66-73.
[30] MONCADA M P, PENNING L H, TIMM L C, et al. Visual examinations and soil physical and hydraulic properties for assessing soil structural quality of soils with contrasting textures and land uses[J]. Soil and Tillage Research, 2014, 140: 20-28.
[31] MONCADA M P, GABRIELS D, CORNELIS W M, et al. Data-driven analysis of soil quality indicators using limited data[J]. Geoderma, 2014, 235-236: 271-278.
[32] DEXTER A R. Soil physical quality: Part II. Friability, tillage, tilth and hard-setting[J]. Geoderma, 2004, 120(3/4): 215-225.
[33] DEXTER A R. Soil physical quality: Part Ⅲ: Unsaturated hydraulic conductivity and general conclusions about S-theory[J]. Geoderma, 2004, 120(3/4): 227-239.
[34] LEO T P, SILVA A P, MACEDO M C M, et al. Least limiting water range: A potential indicator of changes in near-surface soil physical quality after the conversion of Brazilian Savanna into pasture[J]. Soil and Tillage Research, 2006, 88(1/2): 279-285.
[35] SILVA A P, KAY B D. Linking process capability analysis and least limiting water range for assessing soil physical quality[J]. Soil and Tillage Research, 2004, 79(2): 167-174.
[36] LAPEN D R, TOPP G C, GREGORICH E G, et al. Least limiting water range indicators of soil quality and corn production, eastern Ontario, Canada[J]. Soil and Tillage Research, 2004, 78(2): 151-170.
[37] TORMENA C A, SILVA A P, LIBARDI P L. Soil physical quality of a Brazilian Oxisol under two tillage systems using the least limiting water range approach[J]. Soil and Tillage Research, 1999, 52(3/4): 223-232.
[38] WHITE R E. Principles and practice of soil science.[M]. 4th ed. Oxford, UK: Blackwell Publishing, 2006.
[39] CARTER M R. Temporal variability of soil macroporosity in a fine sandy loam under mouldboard ploughing and direct drilling[J]. Soil and Tillage Research, 1988, 12(1): 37-51.
[40] DREWRY J J. Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: a review[J]. Agriculture, Ecosystems & Environment, 2006, 114(2/4): 159-169.
[41] SKOPP J, JAWSON M D, DORAN J W. Steady-state aerobic microbial activity as a function of soil water content[J]. Soil Science Society of America Journal, 1990, 54: 1619-1625.
[42] REYNOLDS W D, BOWMAN B T, DRURY C F, et al. Lu X. Indicators of good soil physical quality: Density and storage parameters[J]. Geoderma, 2002, 110(1/2): 131-146.
[43] SHUKLA M K, LAL R, EBINGER M. Determining soil quality indicators by factor analysis[J]. Soil and Tillage Research, 2006, 87(2): 194-204.
[44] CRAUL P J. Urban soils: Applications and practices[M]. Toronto: John Wiley and Sons, 1999.
[45] GREENLAND D J. Soil management and soil degradation[J]. Journal of Soil Science, 1981, 31(3): 301-322.
[46] PIERI C J M G. Fertility of soils: A future for farming in the West African Savannah[M]. Berlin, Germany: Springer-Verlag, 1992.
[47] DEXTER A R, CZYZ E A. Applications of S-theory in the study of soil physical degradation and its consequences[J]. Land Degradation & Development, 2007, 18(4): 369-381.
[48] DEXTER A R, CZYZ E A, RICHARD G, et al. A user-friendly water retention function that takes account of the textural and structural pore spaces in soil[J]. Geoderma, 2008, 143(3/4): 243-253.
[49] DREWRY J J, PATON R J. Soil physical quality under cattle grazing of a winter-fed brassica crop[J]. Soil Research, 2005, 43(4): 525-531.
[50] DREWRY J J, CAMERON K C, BUCHAN G D. Effect of simulated dairy cow treading on soil physical properties and ryegrass pasture yield[J]. New Zealand Journal of Agricultural Research, 2001, 44(2/3): 181-190.
[51] REYNOLDS W D, DRURY C F, TAN C S, et al. Use of indicators and pore volume-function characteristics to quantify soil physical quality[J]. Geoderma, 2009, 152(3/4): 252-263.
[52] VAN GENUTCHTEN M TH. A closed form equation for predicting hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44: 892-898.
[53] 雷少刚,卞正富.西部干旱区煤炭开采环境影响研究[J].生态学报,2014,34(11):2837-2843.
[54] 李惠娣,杨 琦,聂振龙,等.土壤结构变化对包气带土壤水分参数的影响及环境效应[J].水土保持学报,2002,16(6):100-102,106.
[55] 宋亚新.神府-东胜采煤塌陷区包气带水分运移及生态环境效应研究[D].北京:中国地质科学院博士学位论文,2007.
[56] 赵红梅.采矿塌陷条件下包气带土壤水分布与动态变化特征研究[D].北京:中国地质科学院硕士学位论文,2006.
[57] 魏江生,贺 晓,胡春元,等.干旱半干旱地区采煤塌陷对沙质土壤水分特性的影响[J].干旱区资源与环境,2006,20(5):84-88.
[58] 王 健,高 永,魏江生,等.采煤塌陷对风沙区土壤理化性质影响的研究[J].水土保持学报,2006,20(5):52-55.
[59] 陈士超,左合君,胡春元,等.神东矿区活鸡兔采煤塌陷区土壤肥力特征研究[J].内蒙古农业大学学报,2009,30(2):115-120.
[60] 栗 丽,王曰鑫,王卫斌.采煤塌陷对黄土丘陵区坡耕地土壤理化性质的影响[J].土壤通报,2010,41(5):1237-1240.
[61] 陈龙乾,邓喀中,徐黎华,等.矿区复垦土壤质量评价方法[J].中国矿业大学学报,1999,28(5):449-452.
[62] 李新举,胡振琪,李 晶,等.采煤塌陷地复垦土壤质量研究进展[J].农业工程学报,2007,23(6):276-280.
[63] 黎 炜,陈龙乾,周天建,等.我国采煤沉陷地土壤质量研究进展[J].煤炭科学技术,2011,39(5):125-128.
[64] 谢元贵,车家骧,孙文博,等.煤矿矿区不同采煤塌陷年限土壤物理性质对比研究[J].水土保持研究,2012,19(4):26-29.
[65] 刘哲荣,燕 玲,贺 晓,等.采煤沉陷干扰下土壤理化性质的演变——以大柳塔矿采区为例[J].干旱区资源与环境,2014,28(11):133-138.
[1] 王 波, 叶新才, 程从坤, 胡志荣, 邢修顺, 方千银. 铜陵地区矿山生态环境综合治理途径[J]. 长江流域资源与环境, 2004, 13(5): 494-498.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 龙开胜, 陈利根, 李明艳. 工业化、城市化对耕地数量变化影响差异分析[J]. 长江流域资源与环境, 2008, 17(4): 579 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 赵 媛,郝丽莎. 江苏省电力工业空间结构优化研究[J]. 长江流域资源与环境, 2006, 15(3): 292 -297 .
[5] 张 燕,彭补拙,窦贻俭,金 峰,杨 浩. 水质约束条件下确定土壤允许流失量的方法[J]. 长江流域资源与环境, 2005, 14(1): 109 -113 .
[6] 李成范,刘岚, 周廷刚,张力, 吴忠芳. 基于定量遥感技术的重庆市热岛效应[J]. 长江流域资源与环境, 2009, 18(1): 60 .
[7] 陈 进,黄 薇. 梯级水库对长江水沙过程影响初探[J]. 长江流域资源与环境, 2005, 14(6): 786 -791 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 高永霞, 朱广伟,逄 勇. 消浪工程对太湖底泥再悬浮及营养盐释放的影响[J]. 长江流域资源与环境, 2007, 16(3): 357 .
[10] 窦 明,谢 平,姚堡垒,李桂秋. 中线调水对汉江下游枯水期的水安全影响研究[J]. 长江流域资源与环境, 2008, 17(5): 699 .