长江流域资源与环境 >> 2016, Vol. 25 >> Issue (11): 1774-1780.doi: 10.11870/cjlyzyyhj201611017

• 生态环境 • 上一篇    下一篇

基于水功能区纳污能力的攀枝花限制排污总量研究

闫峰陵, 刘扬扬, 樊皓, 雷少平   

  1. 长江水资源保护科学研究所, 湖北 武汉 430051
  • 收稿日期:2016-02-23 修回日期:2016-05-03 出版日期:2016-11-20
  • 作者简介:闫峰陵(1980~),男,博士,主要从事水资源保护及水土保持规划研究.E-mail:151499454@qq.com
  • 基金资助:
    国家自然科学基金项目(41301285);水利部公益性行业科研专项(201001006)

TOTAL POLLUTANT AMOUNT CONTROL PROGRAM IN PANZHIHUA BASED ON PERMISSIBLE POLLUTION BEARING CAPACITY OF WATER FUNCTION ZONE

YAN Feng-ling, LIU Yang-yang, FAN Hao, LEI Shao-ping   

  1. ChangJiang Water Resources Protection Institute, Wuhan 430051, China
  • Received:2016-02-23 Revised:2016-05-03 Online:2016-11-20
  • Supported by:
    the National Natural Science Foundation of China(41301285);Non-Profit Scientific Research Program of Water Resources of China(201001006)

摘要: 实施水功能区限制纳污红线管理,控制陆域范围污染物排放总量,是保障水功能区水质达标的根本途径。针对现有水功能区划分及管理偏重考虑水体自然属性和完整性,缺乏与行政区划、陆域污染源分布的衔接,提出以水功能区划分成果为基础,综合考虑自然水系、行政区划、污染源分布情况的陆域控制单元划分方法,在此基础上,利用GIS空间分析建立水功能区与陆域控制单元的响应关系,制定基于水功能区纳污能力的陆域污染物限制排放总量方案。以攀枝花市河段为例,将攀枝花市划分为15个控制单元,19个控制子单元进行限制排污总量计算及分配,攀枝花全市COD、氨氮限制排放总量分别为17 437.6 t/a、1 866.0 t/a,与攀枝花市污染物总量控制规划成果基本一致。

关键词: 水功能区, 纳污能力, 控制单元, 限制排放总量

Abstract: Implementing pollution receiving redline management and controlling pollutant amount in land area were considered as essential way to ensure water quality standards. The natural attribute and integrity of catchment were overemphasized in water function zoning and management, resulted in lack of connection with administrative division and distribution of pollution sources. Aiming at this problem, the technical route of the control unit division were proposed based on delineation of water function. By considering catchment characteristics, administrative division and distribution of pollution sources, the relationship between water function zone and control unit was established with GIS. Depending on above method, the total control pollutant amount in each control unit was carried out based on permissible pollution bearing capacity of water function zone. The method was applied to Panzhihua reach as a study case. The whole watershed was ultimately divided into 15 control units and 19 control subunits. Furthermore, the total control pollutant amount of COD and ammonia nitrogen was evaluated 17 437.6 t per year and 1 866.0 t per year. The result show fine consistency with pollutant amount control program adopted by local environmental authorities.

Key words: water function zone, permissible pollution bearing capacity, control unit, total control pollutant amount

中图分类号: 

  • X52
[1] 孙宇飞, 王建平, 王晓娟. 关于"三条红线"指标体系的几点思考[J]. 水利发展研究, 2010(8):62-65, 72.[SUN Y F, WANG J P, WANG X J. Suggestions of "three red lines" indicator system[J]. Water Resources Development Research, 2010(8):62-65, 72.]
[2] 王浩. 实行最严格水资源管理制度关键技术支撑探析[J]. 中国水利, 2011(6):28-29, 32.[WANG H. Exploration and analysis of key technological support for the strictest managerial system of water resources[J]. China Water Resources, 2011(6):28-29, 32.]
[3] 彭文启. 水功能区限制纳污红线指标体系[J]. 中国水利, 2012(7):19-22.[PENG W Q. Index system for limiting pollution load red line of water function zone[J]. China Water Resources, 2012(7):19-22.]
[4] 王方清, 王孟, 吴国平, 等. 长江流域水功能区纳污红线管理体系构建与实践[J]. 人民长江, 2013, 44(22):1-4.[WANG F Q, WANG M, WU G P, et al. Construction and practice of "red line" management system for pollution receiving of water function zones in Yangtze River Basin[J]. Yangtze River, 2013, 44(22):1-4.]
[5] 何海, 叶建春, 陆桂华. 太湖流域水资源阈值探析[J]. 长江流域资源与环境, 2012, 21(9):1080-1086.[HE H, YE J C, LU G H. Study on water resources threshold of the Tai lake basin[J]. Resources and Environment in the Yangtze Basin, 2012, 21(9):1080-1086.]
[6] 王晓青, 郭劲松. 三峡蓄水对小江CODCr、NH3-N及TP纳污能力的影响[J]. 中国环境科学, 2012, 32(4):674-678.[WANG X Q, GUO J S. Effects on the CODCr, NH3-N and TP capacities in the Xiaojiang River after the impoundment of the Three Gorges Reservoir[J]. China Environmental Science, 2012, 32(4):674-678.]
[7] 方玉杰, 万金保, 罗定贵, 等. 流域总量控制下赣江流域控制单元划分技术[J]. 环境科学研究, 2015, 28(4):540-549.[FANG Y J, WAN J B, LUO D G, et al. Study on control unit division technology for total amount control in Gangjiang Basin[J]. Research of Environmental Sciences, 2015, 28(4):540-549.]
[8] 王涛, 张萌, 张柱, 等. 基于控制单元的水环境容量核算研究-以锦江流域为例[J]. 长江流域资源与环境, 2012, 21(3):283-287.[WANG T, ZHANG M, ZHANG Z, et al. Calculation of water environmental capacity based on control unit-a case study of the Jinjiang river basin[J]. Resources and Environment in the Yangtze Basin, 2012, 21(3):283-287.]
[9] 周刚, 雷坤, 富国, 等. 河流水环境容量计算方法研究[J]. 水利学报, 2014, 45(2):227-234, 242.[ZHOU G, LEI K, FU G, et al. Calculation method of river water environmental capacity[J]. Journal of Hydraulic Engineering, 2014, 45(2):227-234, 242.]
[10] 李如忠, 汪家权, 王超, 等. 不确定性信息下的河流纳污能力计算初探[J]. 水科学进展, 2003, 14(4):459-463.[LI R Z, WANG J Q, WANG C, et al. Calculation of river water environmental capacity under unascertained information[J]. Advances in Water Science, 2003, 14(4):459-463.]
[11] 傅慧源. 长江干流水域纳污能力及限制排污总量研究[J]. 人民长江, 2008, 39(23):40-42.[FU H Y. Research on pollutant carrying capacity and limited total sewage amount of water function area in the Yangtze River Basin[J]. Yangtze River, 2008, 39(23):40-42.]
[12] 宋向阳, 吴发启, 赵龙山, 等. 基于DEM的延河流域水文特征提取与分析[J]. 干旱地区农业研究, 2012, 30(4):200-206.[SONG X Y, WU F Q, ZHAO L S, et al. Extraction and analysis of hydrological characteristics of Yanhe watershed based on DEM[J]. Agricultural Research in the Arid Areas, 2012, 30(4):200-206.]
[13] 项璐, 冯秀丽, 王侃, 等. 基于DEM的宁波市皎口-周公宅水库水源保护区的划区定界方法[J]. 水资源保护, 2012, 28(5):83-86.[XIANG L, FENG X L, WANG K, et al. Zoning and delimitation of water source conservation areas based on DEM in Jiaokou and Zhougongzhai reservoirs in Ningbo City[J]. Water Resources Protection, 2012, 28(5):83-86.]
[14] 汤国安, 杨昕. ArcGIS地理信息系统空间分析实验教程[M]. 北京:科学出版社, 2006.[TANG G A, YANG X. ArcGIS spatial analysis GIS experiment course[M]. Beijing:Science Press, 2006.]
[15] 冉磊, 王健, 程丽萍, 等. 基于DEM的普渡河流域水文特征提取方法研究[J]. 城市勘测, 2009(5):123-125, 129.[RAN L, WANG J, CHENG L P, et al. Rearch on the hydrological information extraction of Pudu river basin besed on DEM[J]. Urban Geotechnical Investigation & Surveying, 2009(5):123-125, 129.]
[1] 姜大川, 肖伟华, 范晨媛, 宫博亚. 武汉城市圈水资源及水环境承载力分析[J]. 长江流域资源与环境, 2016, 25(05): 761-768.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[4] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[5] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[6] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[7] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[8] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[9] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .