长江流域资源与环境 >> 2016, Vol. 25 >> Issue (Z1): 50-58.doi: 10.11870/cjlyzyyhj2016Z1008

• 生态环境 • 上一篇    下一篇

模拟及河道实验浮床水芹根系生长及生物量分配对比研究

辛在军1,2, 李秀珍1, 贾悦1, 郭文永1, 孙永光1   

  1. 1. 华东师范大学河口海岸学国家重点实验, 上海 200062;
    2. 江西省科学院鄱阳湖研究中心, 江西 南昌 330096
  • 收稿日期:2015-12-02 修回日期:2016-04-28 出版日期:2016-11-26
  • 通讯作者: 李秀珍,E-mail:xzli@sklec.ecnu.edu.cn E-mail:xzli@sklec.ecnu.edu.cn
  • 作者简介:辛在军(1981~),男,博士,主要从事水环境生态研究.E-mail:Zaijunxin@126.con
  • 基金资助:
    江西省科学院博士引进项目(2013-YYB-6);华东师范大学河口海岸学国家重点实验室科研业务经费(2010RCDW08)

COMPARISON OF ROOT SYSTEM GROWTH AND BIOMASS ALLOCATION BETWEEN WATER TANK AND RIVER EXPERIMENT FOR WATERCRESS (OENANTHE JAVANICA (BLUME) DC) FLOATING BED

XIN Zai-jun1,2, LI Xiu-zhen1, JIA Yue1, GUO Wen-yong1, SUN Yong-guang1   

  1. 1. Stake Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China;
    2. Poyang Lake Research Center, Jiangxi Academy of Sciences, Nanchang 330096, China
  • Received:2015-12-02 Revised:2016-04-28 Online:2016-11-26
  • Supported by:
    Scientific Research Foundation for Doctors,Jiangxi Academy of Sciences(2013-YYB-6);Project of State Key Laboratoty of Estuarine and Coastal Research,East China Normal University(2010RCDW08)

摘要: 为了对比研究浮床植物水芹菜在模拟及野外河道实验中根系生长及生物量分配的差异性,探索水芹浮床模拟实验与实际应用中的差异性,我们在实验河道边放置水箱,通过抽取河水到水箱中设置水芹浮床水箱模拟实验,并且与河道中水芹浮床实验作对比。结果发现:河道和水箱中植物根系指标除了平均根直径外其他指标随着水芹的生长以指数方式增长,平均根直径随着水芹的生长以指数方式下降;在根系总长度、根系总表面积、根系分叉数、根系交叠数方面,水箱中的水芹显著大于河道中的水芹(p<0.05);水箱浮床水芹根系指标的增长速度大于地上部分的增长速度,河道中水芹地上部分增长速度要大于地下部分;水芹冠根比随时间的变化呈现出先下降后上升趋势,水箱中水芹冠根比的变化速率更小。水箱中的水芹受到了营养条件的限制,用模拟水芹浮床来研究其净化效率时,在一定程度上(与实际应用相比)高估了河道水芹浮床根系部分的作用。

关键词: 水芹浮床, 生物量分配, 根系

Abstract: We conducted comparative experiment for watercress floating bed between water tank and river to investigate the difference in root growth and biomass distribution. The water in tank was pumped from the river. We aimed to explore the difference in plant growth between controlled experiment and practical application of watercress floating bed. The results showed that:Most root parameters of watercress showed an exponential increase trend in river and water tank while average root diameter showed decreases trend with time. Total root length, total root surface area, number of root branch, and number of root overlaps were all significantly higher in tanks than in river (p<0.05). The root mass of watercress in tanks showed a faster growth speed than the above water biomass which is contrary to the growth speed between above and under water biomass in river. The crown-root ratio showed a downward and then upward trend with time. But the rate of change in tanks is smaller than that in river. The above founding indicates that watercress in the tanks may be faced with nutrient limitations, which can result in overestimation of nutrient removal of watercress floating bed root system in river.

Key words: watercress floating bed, biomass allocation, root

中图分类号: 

  • X522
[1] 白峰青, 郑丙辉, 田自强. 水生植物在水污染控制中的生态效应[J]. 环境科学与技术, 2004, 27(4):99-100, 110.[BAI F Q, ZHENG B H, TIAN Z Q. Ecological effects of aquatic plants on water pollution control[J]. Environmental Science & Technology, 2004, 27(4):99-100, 110.]
[2] 辛在军, 李秀珍, 闫中正, 等. 冬季不同刈割水芹浮床连续净化过程及效果[J]. 生态学杂志, 2011, 30(12):2745-2752.[XIN Z J, LI X Z, YAN Z Z, et al. Purification effects of different stubble height Oenanthe javanica (Blume) DC floating bed systems in winter in two successive experimental periods[J]. Chinese Journal of Ecology, 2011, 30(12):2745-2752.]
[3] 罗固源, 韩金奎, 肖华, 等. 美人蕉和风车草人工浮床治理临江河[J]. 水处理技术, 2008, 34(8):46-48, 54.[LUO G Y, HAN J K, XIAO H, et al. Study on Lin Jiang River control by canna Indica and cyperus alternifoliu artificial floating rafts[J]. Technology of Water Treatment, 2008, 34(8):46-48, 54.]
[4] 程栋梁. 植物生物量分配模式与生长速率的相关规律研究[D]. 兰州:兰州大学博士学位论文, 2007.[CHENG D L. Plant allometric study of biomass allocation pattern and biomass production rates[D]. Lanzhou:Doctor Dissertation of Lanzhou University, 2007.]
[5] 黎磊, 周道玮, 盛连喜. 密度制约决定的植物生物量分配格局[J]. 生态学杂志, 2011, 30(8):1579-1589.[LI L, ZHOU D W, SHENG L X, et al. Density dependence-determined plant biomass allocation pattern[J]. Chinese Journal of Ecology, 2011, 30(8):1579-1589.]
[6] 杨婷婷, 高永, 吴新宏, 等. 小针茅草原植被地下与地上生物量季节动态及根冠比变化规律[J]. 干旱区研究, 2013, 30(1):109-114.[YANG T T, GAO Y, WU X H, et al. Study on seasonal variation of aboveground and underground biomasses of vegetation in the Stipa klemenzii steppe and their ratio[J]. Arid Zone Research, 2013, 30(1):109-114.]
[7] 辛小娟, 王刚, 杨莹博, 等. 氮、磷添加对亚高山草甸地上/地下生物量分配的影响[J]. 生态科学, 2014, 33(3):452-458.[XIN X J, WANG G, YANG Y B, et al. Effects of N, P addition on above/below ground biomass allocation in a subalpine meadow[J]. Ecological Science, 2014, 33(3):452-458.]
[8] 金相灿, 稻森悠平, 朴俊大. 湖泊和湿地水环境生态修复技术与管理指南[M]. 北京:科学出版社, 2007.[JIN X C, DAO S Y P, PIAO J D. Ecological restoration technology and management guidelines on Lake wetland water environment[M]. Beijing:China Science Publishing and Media Ltd, 2007.]
[9] WESTOBY M. A leaf-height-seed (LHS) plant ecology strategy scheme[J]. Plant and Soil, 1998, 199(2):213-227.
[10] WESTOBY M, FALSTER D S, MOLES A T, et al. Plant ecological strategies:some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 2002, 33:125-159.
[11] 杨利平, 周晓峰. 细叶百合的生物量和营养分配[J]. 植物生态学报, 2004, 28(1):138-142.[YANG L P, ZHOU X F. Biomass and nutrient allocation of Lilium pumilum[J]. Acta Phytoecologica Sinica, 2004, 28(1):138-142.]
[12] BAGHERZADEH A, BRUMME R, BEESE F. Biomass and nutrients allocation in pot cultured beech seedlings:influence of nitrogen fertilizer[J]. Journal of Forestry Research, 2008, 19(4):263-270.
[13] MÜLLER I, SCHMID B, WEINER J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3(2):115-127.
[14] 范国兰, 李伟. 穗花狐尾藻(Myriophyllum spicatum L.)在不同程度富营养化水体中的营养积累特点及营养分配对策[J]. 武汉植物学研究, 2005, 23(3):267-271.[FAN G L, LI W. Response of nutrient accumulation characteristics and nutrient strategy of Myriophyllum spicatum L. under different eutrophication conditions[J]. Journal of Wuhan Botanical Research, 2005, 23(3):267-271.]
[15] 高甲荣, 张东升, 肖斌, 等. 黄土区油松人工林生态系统营养元素分配格局和积累的研究[J]. 北京林业大学学报, 2002, 24(1):26-30.[GAO J R, ZHANG D S, XIAO B, et al. Nutrient distribution and accumulation pattern of Chinese pine plantation ecosystems in the loess region[J]. Journal of Beijing Forestry University, 2002, 24(1):26-30.]
[16] 雷蕾, 刘贤德, 王顺利, 等. 祁连山高山灌丛生物量分配规律及其与环境因子的关系[J]. 生态环境学报, 2011, 20(11):1602-1607.[LEI L, LIU X D, WANG S L, et al. Assignment rule of alpine shrubs biomass and its relationships to environmental factors in Qilian Mountains[J]. Ecology and Environmental Sciences, 2011, 20(11):1602-1607.]
[17] 马志良, 高顺, 杨万勤, 等. 遮荫对撂荒地草本群落生物量分配和养分积累的影响[J]. 生态学报, 2015, 35(16):5279-5286.[MA Z L, GAO S, YANG W Q, et al. Effects of shading treatments on biomass and nutrient accumulation of herb community in abandoned land in the subtropical region[J]. Acta Ecologica Sinica, 2015, 35(16):5279-5286.]
[18] 朱志红, 王刚. 燕麦表型可塑性与繁殖分配的研究[J]. 兰州大学学报(自然科学版), 2002, 38(1):76-83.[ZHU Z H, WANG G. Studies on the phenotypic plasticity and reproductive allocation in Avena sativa L[J]. Journal of Lanzhou University (Natural Sciences), 2002, 38(1):76-83.]
[19] 程栋梁. 植物生物量分配模式与生长速率的相关规律研究[D]. 兰州:兰州大学博士学位论文, 2007.[CHENG D L. Plant allometric study of biomass allocation pattern and biomass production rates[D]. Lanzhou:Doctor Dissertation of Lanzhou University, 2007.]
[20] MCCONNAUGHAY K D M, COLEMAN J S. Biomass allocation in plants:ontogeny or optimality? A test along three resource gradients[J]. Ecology, 1999, 80(8):2581-2593.
[21] 王天慧. 植物表型可塑性及生活史对策研究[D]. 长春:东北师范大学博士学位论文, 2006.[WANG T H. The study of plant phenotypic plasticity and life-history strategies[D]. Changchun:Doctor Dissertation of Northeast Normal University, 2006.]
[22] BLOOM R G, MALLIK A U. Indirect effects of black spruce (Picea mariana) cover on community structure and function in sheep laurel (Kalmia angustifolia) dominated heath of eastern Canada[J]. Plant and Soil, 2004, 265(1/2):279-293.
[23] 韩文轩, 方精云. 幂指数异速生长机制模型综述[J]. 植物生态学报, 2008, 32(4):951-960.[HAN W X, FANG J Y. Review on the mechanism models of allometric scaling laws:3/4 Vs. 2/3 Power[J]. Journal of Plant Ecology, 2008, 32(4):951-960.]
[24] 刘志国, 蔡永立, 李恺. 亚热带常绿阔叶林植物叶-小枝的异速生长[J]. 植物生态学报, 2008, 32(2):363-369.[LIU Z G, CAI Y L, LI K. Studies on the leaf size-twig size spectrum of subtropical evergreen board-leaved woody species[J]. Journal of Plant Ecology, 2008, 32(2):363-369.]
[25] 李嵩, 郑新军, 唐立松, 等. 基于异速生长理论的准噶尔盆地荒漠灌丛形态研究[J]. 植物生态学报, 2011, 35(5):471-479.[LI S, ZHENG X J, TANG L S, et al. Morphological investigation of desert shrubs of China's Junggar Basin based on allometric theory[J]. Chinese Journal of Plant Ecology, 2011, 35(5):471-479.]
[26] 贾美玉, 李雪华, 吴忠铉, 等. 科尔沁沙地流动沙丘3种常见植物的空间分布格局与异速生长[J]. 应用生态学报, 2015, 26(10):2953-2960.[JIA M Y, LI X H, OH C H, et al. Spatial distribution pattern and allometric growth of three common species on moving sand dunes in Horqin Sandy Land, China[J]. Chinese Journal of Applied Ecology, 2015, 26(10):2953-2960.]
[27] 谢然, 陶冶, 常顺利. 四种一年生荒漠植物构件形态与生物量间的异速生长关系[J]. 生态学杂志, 2015, 34(3):648-655.[XIE R, TAO Y, CHANG S L. Allometric relationship between modular morphology and biomass of four annuals in the Gurbantunggut Desert, China[J]. Chinese Journal of Ecology, 2015, 34(3):648-655.]
[28] 王晨, 江泽慧, 郭起荣, 等. 毛竹地上器官的生物量分配及其随个体大小变化的规律[J]. 生态学杂志, 2014, 33(8):2019-2024.[WANG C, JIANG Z H, GUO Q R, et al. Biomass allocation of aboveground components of Phyllostachys edulis and its variation with body size[J]. Chinese Journal of Ecology, 2014, 33(8):2019-2024.]
[1] 施文涛, 谢昕云, 刘西军, 张驰, 柯立, 徐小牛. 安徽大别山区杉木人工林乔木层生物量模型及碳贮量[J]. 长江流域资源与环境, 2015, 24(05): 758-764.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .