长江流域资源与环境 >> 2017, Vol. 26 >> Issue (07): 1102-.doi: 10.11870/cjlyzyyhj201707017

• 区域可持续发展 • 上一篇    

基于ISO14067的长江上游某水电项目碳足迹分析

杜海龙,李哲,郭劲松   

  1. 1.中国科学院水库水环境重点实验室,中国科学院重庆绿色智能技术研究院,重庆,400714;2. 中国科学院大学,北京 100049
  • 出版日期:2017-07-20

CARBON FOOTPRINT OF A LARGE HYDROPOWER PROJECT IN THE UPSTREAM OF THE YANGTZE: FOLLOWING ISO14067

DU Hailong1,2, LI Zhe1, GUO Jinsong1   

  1. 1.Key Laboratory of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences Chongqing, 400714, China; 2. University of Chinese Academy of Sciences,Beijing 100049, China
  • Online:2017-07-20

摘要: 以长江上游某大型水电站为案例,根据国际标准化组织碳足迹量化标准(ISO14067)评价流程,对该水电站全生命周期(建设阶段,运行维护阶段,退役阶段)碳足迹进行估算,并着重考虑了蓄水前后水库温室气体通量差异。研究以碳足迹系数和能源回收率作为指标进行评价,结果表明生命周期碳足迹为5 4170万t CO2eq,碳足迹系数为70~131 g CO2eq/kW?h,中位值为94 g CO2eq/kW?h,该水电站项目能源回收率达2364。与各种能源电站以及国内外同类型水电站相比较,该水电站碳足迹明显较低,且能源回收率显著较高,说明以该水电站为代表的我国西南水电具有显著的优质性,大力开发水电能有效节能减排,明确了生命周期评价方法对于水电站碳足迹评估的适用性。关键词: 长江上游;水电;温室气体;生命周期;不确定性

Abstract: This paper selects a large hydropower station in the upper Yangtze River as a case. Life cycle assessment was used to estimate its greenhouse gas (GHGs) emission according to the standardized processes (ISO14067) for carbon footprint quantization, focusing on the difference before and after the impoundment from three stages, i.e. construction, operation and decommission. Carbon emissions factors kW?hand energy payback ratio are selected as the indicators of cleanliness and quality. The results showed that: the carbon footprint of the hydropower station was 5417 million tons CO2eq, carbon emission kW?hfactor of the hydropower station was 70-131 g CO2eq/kW?h, and energy payback ratio was 2364. Compared with other kinds of power plants and other hydropower stations with reservoir, the carbon footprint is obviously lower and energy payback ratio is significantly higher. This implies the high quality and cleanliness of hydropower resource in the Southwest China. We came to a conclusion that hydropower development may promote the energysaving and emissionreduction; life cycle assessment (LCA) is applicable for analysis on carbon footprint of hydropower project. Key words:upper Yangtze River; hydropower; greenhouse gas; life cycle; uncertainty

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张磊,董立新,吴炳方,周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107 -112 .
[4] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[5] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[6] 孔令强. 水电工程农村移民入股安置模式初探[J]. 长江流域资源与环境, 2008, 17(2): 185 .
[7] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[8] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[9] 于苏俊,张 继,夏永秋. 基于遗传算法的可持续土地利用动态规划[J]. 长江流域资源与环境, 2006, 15(2): 180 -184 .
[10] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .