长江流域资源与环境 >> 2019, Vol. 28 >> Issue (03): 565-576.doi: 10.11870/cjlyzyyhj201903007

• 自然资源 • 上一篇    下一篇

缙云山针阔混交林碳通量变化特征及影响因子研究

王  倩1,王云琦1,2* ,马  超1,2,王  彬1,2,李一凡1   

  1. (1北京林业大学水土保持学院,重庆缙云山三峡库区森林生态系统国家定位观测研究站,北京100083;2北京市水土保持工程技术研究中心,北京100083)
  • 出版日期:2019-03-20 发布日期:2019-03-22

Characteristics of Carbon Fluxes and Their Response to Environmental Factors in Ecosystems of Mixed Coniferous and Broad-leaved Forests in Jinyun Mountain

WANG Qian 1, WANG Yun-qi 1,2, MA Chao 1,2, WANG Bin 1,2, LI Yi-fan 1   

  1. (1Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; 2 Beijing Engineering Research Center of Soil and Water Conservation, Beijing 100083, China)
  • Online:2019-03-20 Published:2019-03-22

摘要: 基于涡度相关技术,以2016年6月~2017年5月的通量数据为依据,分析了缙云山针阔混交林生态系统碳通量变化特征及其对环境因子的响应。结果表明:各月CO2通量平均日变化呈“U”字形,最小值出现在7月,为 -0.95 mg·m -2·s -1,最大值在12月,为0.43 mg·m -2·s -1,CO2通量正负值转换时刻具有明显的季节变化规律,夏季日碳汇时间最长,冬季日碳汇时间最短;净生态系统碳交换量累积量除12月为正值(20.38 gC·m -2·mon-1),表现为碳源外,其他月份均为负值,表现为碳汇,碳积累量最多的是7月(-129.53 gC·m -2·mon-1),净生态系统碳交换、生态系统呼吸、总生态系统碳交换年总量分别为 -566.49、1 196.68、-1 761.63 gC·m -2·a -1;光合有效辐射是影响日间净碳交换量的主导因子,二者关系符合Michaelis-Menten模型,日间净碳交换量随光合有效辐射增大而降低,光合有效辐射PAR能解释14.1%~58.2%的日间净碳交换量变化,饱和水汽压差是日间净碳交换量限制因子,最适范围是0.5~1.0 kPa,过高和过低均会使日间净碳交换量对光合有效辐射的响应减弱;影响夜间净碳交换量的主导因子是5 cm土温,二者关系符合Van’t Hoff模型,夜间净碳交换量随5 cm土温增大而增加,土壤体积含水率是夜间净碳交换量的限制因子,饱和水汽压差大于或小于0.28 m -3·m -3均会对夜间净碳交换量产生抑制作用,但作用较小。缙云山针阔混交林净生态系统碳交换能力与相近纬度其他森林生态系统基本持平,总生态系统碳交换能力和生态系统呼吸强度则较大。

Abstract: On the basis of eddy covariance technique and flux data from June, 2016 to May, 2017, the characteristics of carbon flux in the mixed broadleaf-conifer forest ecosystem in Jinyun Mountain and its response to environmental factors are analyzed. The results show that the mean inteRdiuRnal variation of monthly CO2 flux presented a “U” shape during the study, and the minimum value is -0.95 mg·m -2·s -1 in July and the maximum value is 0.43 mg·m -2·s -1 in December. Moreover, there is obvious seasonal variation in the transition time of CO2 flux positive and negative values, among them, the time of daily carbon sink is the longest in summer and the shortest in winter; the NEE cumulant is negative and presented as carbon sink in 12 months of one year except December, in which is positive (20.38 gC·m -2·mon-1) and presented as carbon source, the largest carbon accumulation is in July (-129.53 gC·m-2·mon-1), NEE, ER and total GEE are -566.49, 1 196.68 and -1 761.63 gC·m-2·a-1·respectively.Furthermore, PAR is the dominant factor affecting the NEEd, the relationship between them is consistent with the Michaelis-Menten model, NEEd decreases with the increase of PAR, and PAR can explain the change NEEd of 14.1%-58.2%; VPD is the limiting factor of NEEd, whose optimal range is 0.5-1 kPa, because too high or too low will reduce the response of NEEd to PAR; 5cm Ts is the dominant factor affecting NEEn,the relationship between them is consistent with the Van’t Hoff model, and NEEn increases with the increase of 5 cm Ts; SWC is the limiting factor of NEEn, when SWC is greater or less than 0.28 m-m-3, it will inhibit the NEEn with little effect. To sum up, the NEE capacity of mixed broadleaf-conifer forest in Jinyun Mountain is basically equal to that of other forest ecosystems at similar latitudes, while the total ecosystem exchange capacity and ecosystem respiratory intensity are larger.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨桂芳, 彭红霞, 陈中原, 李长安, 黄俊华, 胡超涌. 兰州与江汉平原有机碳同位素的古气候指示意义对比研究[J]. 长江流域资源与环境, 2005, 14(4): 486 -490 .
[2] 唐华秀,马劲松,战金艳,邓祥征. 江苏省人口数据空间离散化研究及其精度分析[J]. 长江流域资源与环境, 2008, 17(4): 506 .
[3] 王学雷,蔡述明,任宪友,陈世俭. 三峡库区湿地生态建设与保护利用[J]. 长江流域资源与环境, 2004, 13(2): 149 -153 .
[4] 尹占娥,许世远. 上海浦东新区土地利用变化及其生态环境效应[J]. 长江流域资源与环境, 2007, 16(4): 430 .
[5] 张 颖 |陈 艳. 中部地区生物质资源潜力与减排效应估算[J]. 长江流域资源与环境, 2012, 21(10): 1185 .
[6] 乔卫芳 | 牛海鹏| 赵同谦. 基于SWAT模型的丹江口水库流域农业非点源污染的时空分布特征[J]. 长江流域资源与环境, 2013, 22(02): 190 .
[7] 牛建利|何紫云|张天宇|陈锡云.  旱涝急转对生产、生活与生态的影响及应对措施效果分析——以安徽省巢湖市槐林镇为例[J]. 长江流域资源与环境, 2013, 21(Z): 86 .
[8] 徐昌新|阮禄章|胡振鹏|李述. 鄱阳湖越冬鸟类种群动态与保护研究[J]. 长江流域资源与环境, 2014, 23(03): 407 .
[9] 熊勤学, 胡佩敏. 基于HJ卫星混合像元分解法的湖北省四湖地区夏收作物种植信息提取[J]. 长江流域资源与环境, 2014, 23(06): 869 .
[10] 万金保,高园,万莉. 负荷历时曲线法在赣江流域TMDL计划中的应用[J]. 长江流域资源与环境, 2014, 23(08): 1139 .