长江流域资源与环境 >> 2019, Vol. 28 >> Issue (04): 805-816.doi: 10.11870/cjlyzyyhj201904007

• 自然资源 • 上一篇    下一篇

中国省际水资源福利绩效时空分异分析

臧漫丹,娄子孟,孔嘉婧   

  1. (同济大学经济与管理学院,上海 200092)
  • 出版日期:2019-04-20 发布日期:2019-05-10

Spatial-temporal Differentiation of Interprovincial Water Well-being Performance in China

ZANG Man-dan1, LOU Zi-meng1, KONG Jia-jing   

  1. (School of Economics and Managemeng, Tongji University,Shanghai 200092,China)
  • Online:2019-04-20 Published:2019-05-10

摘要: 水资源是人类社会发展的重要自然资源。在中国水资源匮乏的背景下,如何在水资源承载能力范围之内,以更少的水资源消耗去创造更多的福利增长,谋求水资源的可持续利用极为重要。基于生态福利绩效背后的逻辑,构建水资源福利绩效指标体系,衡量中国31个省市区的水资源可持续利用水平。为解决传统DEA方法计算的效率值不能跨期比较问题,以2006年为基期,利用广义DEA方法测度2006~2015年中国31个省市区水资源福利绩效,并采用全局Moran’s I指数、Moran散点图、局部Moran’s I指数、LISA聚集图对中国水资源可持续利用水平的空间集聚状态进行统计分析。研究发现:(1)2006~2015年中国31个省市区水资源福利绩效整体呈不断上升趋势,东部地区最优,西部次之,中部最差。各省市区水资源可持续利用水平具有显著差异,其中,北京水资源福利绩效最高,宁夏水资源福利绩效最低。(2)中国水资源福利绩效具有空间集聚效应且该效应逐年增强,从2009年起通过显著性检验。观测期内中国各个省市区水资源可持续利用水平空间演变路径包括正向空间集聚、负向空间集聚、负向空间外溢趋势及空间分异4种状态。随着时间的推移,越来越多省份受到邻接省份负向空间影响,进入低低集聚区。各省市区不仅要注重自身水资源福利绩效的提升,同时应注重邻接省份水资源可持续利用状态及趋势,以防其负向空间影响。(3)水资源匮乏的京津冀地区长期稳定在高高集聚区,而水资源禀赋较优的珠江流域省份如湖南、广东等长期稳定在低低集聚区。缺水地区水资源福利绩效优于富水地区,这为富水地区的水资源利用提出了警示作用。

Abstract: Water is the important natural resource for the development of human society. Under the background of water scarcity in China, it is very important to create more welfare growth with less water consumption and seek sustainable development of water resources. Based on the logic of ecological well-being performance, this paper constructs an evaluation system of water well-being performance to measure the sustainable utilization of water resources of 31 provincial-level regions in China. To solve the problem that the intertemporal outcomes computed from traditional DEA methods are not comparable, this paper adopts the generalized DEA method to measure the water well-being performance of 31 provincial-level regions in China from 2006 to 2015, and analyses the spatial agglomeration of the sustainable utilization of water resources in China using the global Moran’s I index, the Moran scatter plot, the local Moran’I index, and the LISA cluster plots. The study found: ①The water well-being performance of 31 provincial-level regions in China is on the rise from 2006 to 2015 , and the eastern region is the best, followed by the west, and the central region is the worst. There are still significant differences between the 31 provincial-level regions. The water well-being performance of Beijing is the highest, and the water resource welfare of Ningxia is the lowest.②The water well-being performance in China has spatial agglomeration effect and has been increasing year by year and passes the significant test since 2009. During the observation period, the spatial evolution path of the sustainable utilization of water resources in 31 provincial-level regions in China includes four states: positive spatial agglomeration, negative spatial agglomeration, negative spatial overflow and spatial differentiation. As time goes on, more and more provinces are affected by the negative influence of the neighboring provinces and enter low-low concentration areas. The provincial government must not only pay attention to the improvement of their own water resource welfare performance, but also should pay attention to the trends of the sustainable use of water resources in neighboring provinces in order to prevent negative spatial effects.③The Beijing-Tianjin-Hebei region has long been stable in high and high agglomeration areas, while the provinces near Pearl River valley such as Hunan and Guangdong have long been stable in low-low concentration areas. The water well-being performance in water-scarce areas is better than that in rich water areas, which provides a warning for the rich water areas.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 关兴良,胡仕林,蔺雪芹,鲁莎莎. 武汉城市群城镇用地扩展的动态模式及其驱动机制[J]. 长江流域资源与环境, 2014, 23(11): 1493 .
[2] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[3] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[4] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[5] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[6] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[7] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .
[8] 钟业喜, 郭卫东, 毛炜圣, 王晓静, 冯兴华. 闽新轴带城市铁路网络及可达性演变研究[J]. 长江流域资源与环境, 2019, 28(05): 1015 -1024 .
[9] 李静芝, 代宇涵, 赵 雯, 樊晨曦, 罗文婧, 熊 鹰, 张永志, 汤礼莎. 城市化系统与生态系统交互耦合时空特征及协调发展预警研究——以湖南省为例[J]. 长江流域资源与环境, 2019, 28(07): 1590 -1601 .
[10] 王卓, 宋策, 闫文龙, 朱来福. 汉江上游平川段鱼类群落多样性及空间格局分析[J]. 长江流域资源与环境, 2019, 28(07): 1675 -1681 .