长江流域资源与环境 >> 2020, Vol. 29 >> Issue (3): 609-622.doi: 10.11870/cjlyzyyhj202003001

• 自然资源 • 上一篇    下一篇

太湖流域典型农用地表层土壤重金属空间分异潜在风险因子识别

刘霈珈1,2,吴克宁3,4,罗  明5   

  1. (1. 郑州大学政治与公共管理学院,河南 郑州 450001;2. 社会治理河南省协同创新中心,河南 郑州 450001;3. 中国地质大学(北京) 土地科学技术学院,北京100083;4. 自然资源部国土整治重点实验室,北京 100035;5. 自然资源部国土整治中心,北京 100035)
  • 出版日期:2020-03-20 发布日期:2020-03-20

Potential Risk Factors Identification of Heavy Metals Spatial Variation in Typical Agricultural Land Topsoil of Taihu Basin

LIU Pei-jia1,2, WU Ke-ning3,4, LUO Ming 5   

  1. (1. School of Politics and Public Administration, Zhengzhou University, Zhengzhou 450001, China;2. Collaborative Innovation Center of Henan Province, Zhengzhou 450001, China;3.School of Land Science and Technology, China University of Geosciences, Beijing 100083, China;4. Key Laboratory of Land Consolidation and Rehabilitation,Ministry of Natural Resources, Beijing 100035, China;5. Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China)
  • Online:2020-03-20 Published:2020-03-20

摘要: 摘  要:土壤是人类生存、生活最基本的生产资料。识别农用地表层土壤重金属空间分异潜在风险因子对区域重金属污染农用地安全利用具有重要意义。以太湖流域典型农用地土壤为研究对象,运用Normal Score Transformation(NST)变换法处理表层土壤6种重金属非正态分布数据,分析构建表层土壤重金属空间分异的潜在风险因子集,利用地理探测器识别法(GeoDetector Model, GDM)识别潜在风险因子及其交互作用。结果表明:通过因子探测器识别发现6种表层土壤重金属的前5大潜在风险因子既有自然条件因子,也有社会经济因子。交互探测器识别发现自然与社会经济潜在风险因子对表层土壤6种重金属空间分异均随着因子的线性叠加而呈现出1+1>2的非线性增强的交互作用。风险探测器可识别出表层土壤6种重金属各自的潜在风险因子类别。基于NST和GDM的表层土壤重金属空间分异潜在风险因子识别思路可为准确识别与监测重金属污染区域提供更准确和详细的科学依据。

Abstract: Abstract:The soil is the most fundamental means of production for human survival and life. It is of great significance to identify the factors of the potential risk because of heavy metals spatial variation in typical agricultural land for the safe utilization of heavy metals contaminated agricultural land. Normal Score Transformation was used to transfer six heavy metals data into Gaussian distribution. In this study, we identified the potential risk factors of six heavy metals spatial variation in typical agricultural land of Taihu watershed by using GeoDetector Model(GDM). Factor detector results showed that the top five potential risk factors of these six heavy metals distribution included both natural factors and social-economic factors. Interaction detector results showed that interactions of potential risk factors all enhance nonlinearly. In other words, the influence of these six heavy metals distribution were an enhance nonlinearly interaction effect, which were based on potential risk factors. The specific categories of each potential risk factor could be identified by risk detector for each heavy metal. GDM results can help identify and monitor the heavy metal contaminated areas.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李燕玲, 刘爱民. 长江流域冬季农业主要作物的耕地竞争机制及案例研究[J]. 长江流域资源与环境, 2009, 18(2): 146 .
[2] 罗专溪,张 远,郑丙辉,富 国,陆兆华. 三峡水库蓄水初期水生态环境特征分析[J]. 长江流域资源与环境, 2005, 14(6): 781 -784 .
[3] 刘爱霞,刘正军,王 静. 基于PCA变换和神经元网络分类方法的中国森林制图研究[J]. 长江流域资源与环境, 2006, 15(1): 19 -24 .
[4] 王玉蓉,李嘉| 李克锋,芮建良. 雅砻江锦屏二级水电站减水河段生态需水量研究[J]. 长江流域资源与环境, 2007, 16(1): 81 -85 .
[5] 郑明媚,李满春,毛 亮,黎韶光. GIS支持的县域人口迁移空间模型研究——以浙江省临安市为例[J]. 长江流域资源与环境, 2006, 15(3): 281 -286 .
[6] 向云波,徐长乐,彭秀芬. 长江三角洲城市群循环经济发展水平的空间格局分析[J]. 长江流域资源与环境, 2008, 17(5): 661 .
[7] 李春华,李 宁,史培军. 基于SOM模型的中国耕地压力分类研究[J]. 长江流域资源与环境, 2007, 16(3): 318 .
[8] 任雪梅,徐永辉,周 彬,杨达源. 宜宾—重庆段川江高阶地物质来源的定量分析——判别分析在重矿物分析中的应用[J]. 长江流域资源与环境, 2006, 15(3): 330 -334 .
[9] 许有鹏,于瑞宏,马宗伟. 长江中下游洪水灾害成因及洪水特征模拟分析[J]. 长江流域资源与环境, 2005, 14(5): 638 -643 .
[10] 胡明秀, 胡 辉, 王立兵. 武汉市工业“三废”污染状况计量模型研究[J]. 长江流域资源与环境, 2005, 14(4): 470 -474 .