长江流域资源与环境 >> 2020, Vol. 29 >> Issue (8): 1790-1799.doi: 10.11870/cjlyzyyhj202008011

• 自然资源 • 上一篇    下一篇

基于MODIS像元尺度的三峡库区植被覆盖度变化的地形分布特征

孟浩斌1,3,周启刚1,2,3* ,李明慧1,3,陈鹏1,3,谭淼1,3   

  1. (1. 重庆工商大学环境与资源学院,重庆 400067;2. 重庆工商大学旅游与国土资源学院,重庆 400067;
    3. 生态环境空间信息数据挖掘与大数据集成重庆市重点实验室,重庆 401320)
  • 出版日期:2020-08-20 发布日期:2020-09-21

Topographic Distribution Characteristics of Vegetation Cover Change in the Three Gorges Reservoir Area Based on MODIS Pixel Scale

MENG Hao-bin 1,3,ZHOU Qi-gang 1,2,3,LI Ming-hui 1,3,CHEN Peng 1,3,TAN Miao 1,3   

  1. (1. College of Environment and Resources,Chongqing Technology and Business University,Chongqing 400067,China;
    2. School of Tourism and Land Resources,Chongqing Technology and Business University,Chongqing 400067,China;
    3. Chongqing Key Laboratory of Spatial Data Mining and Big Data Integration for Ecology and Environment,Chongqing 401320,China)
  • Online:2020-08-20 Published:2020-09-21

摘要: 区域植被覆盖变化监测是研究资源环境承载力的基础,其对区域可持续发展至关重要。基于MODIS NDVI数据,采用像元二分模型计算了2001~2018年三峡库区植被覆盖度,结合植被覆盖度变化类型提取模型及分布指数,揭示了库区植被覆盖度变化在不同地形因子上的分布特征。研究表明:(1)三峡库区植被以高和中高覆盖度为主,其分别占库区总面积的65.72%和28.61%。18年来,库区年均植被覆盖度增长率为0.14%;(2)库区植被稳定类型占总面积的79.50%,植被改善占16.71%,植被退化占3.79%。26个区(县)中,长寿区、江北区等7区的植被改善面积小于植被退化面积,存在生态退化风险;(3)高程小于500 m、坡度小于6°的区域植被退化优势显著;高程500~1 100 m的区域植被改善为主导类型;坡度6°~15°的区域无明显优势分布;高程大于1 100 m、坡度大于15°的区域植被稳定和植被改善类型为优势分布;(4)库区不同坡向上,平坡上的植被退化类型显著,当坡向由阴坡向阳坡转变(西坡→南坡,北坡→东坡)时,植被覆盖度变化优势分布类型由植被退化型转变为植被改善型。研究结果揭示了三峡库区植被覆盖的空间分布和变化特征,对库区生态环境评价和植被恢复及保护具有一定的借鉴意义。

Abstract: Monitoring of regional vegetation cover change is the basis of researching the carrying capacity of resources and environment, which is crucial for regional sustainable development. Based on the MODIS NDVI data, the fractional vegetation coverage of the Three Gorges reservoir area in 2001-2018 was calculated by using dimidiate pixel model. Combining the extraction model of fractional vegetation coverage change type and distribution index, the distribution characteristics of fractional vegetation cover change on different topographic factors in the reservoir area were revealed. The research shows that: (1) The fractional vegetation cover of the Three Gorges reservoir area is dominated by high and medium-high coverage, which accounted for 65.72% and 28.61% of the total area of the study area respectively. In the past 18 years, the annual coverage growth rate reached 0.14%. (2) The vegetation stability type accounted for 79.50% of the reservoir area, the vegetation improvement type accounted for 16.71%, and the vegetation degradation type accounted for 3.79%. In 26 distticts of the Three Gorges reservoir area, the vegetation improvement area in 7 districts, such as Changshou District and Jiangbei District, is less than the vegetation degradation area, which had high ecological degradation risk. (3) The vegetation degradation type in the area with elevation less than 500 m and slope less than 6° is significant; the improvement of vegetation in the elevation range of 500-1 100 m is the dominant type; the area with slope of 6°-15° has no obvious dominant distribution. Vegetation stability and vegetation improvement type with an elevation greater than 1 100 m and a slope greater than 15° are the dominant distributions. (4) In the study area, the vegetation degradation type on the flat slope is significant in different aspects. When the aspects changes from the shade to the sunny slope (west slope → south slope, north slope → east slope), the dominant distribution type of vegetation cover changes from vegetation degradation type to vegetation improvement type. The research results reveal the spatial distribution and change characteristics of vegetation cover in the Three Gorges reservoir area, which has certain reference significance for the ecological environment assessment and vegetation restoration and protection of the reservoir area.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 薛小燕,查小春,黄春长,庞奖励,刘建芳. HECRAS模型在汉江上游郧县尚家河段全新世古洪水流量重建中的应用[J]. 长江流域资源与环境, 2014, 23(10): 1406 .
[2] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[3] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[4] 胡继亮 熊自洁 张悦 高婷. 2019年2期自然灾害水平对农户投保意愿的影响分析——基于湖北微观调查数据[J]. 长江流域资源与环境, 0, (): 0 .
[5] 王凯, 王玉杰, 王彬, 张守红, 王云琦, 王晨沣. 黄壤坡面土壤分离速率研究[J]. 长江流域资源与环境, 2018, 27(09): 2114 -2121 .
[6] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[7] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[8] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[9] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .
[10] 钟业喜, 郭卫东, 毛炜圣, 王晓静, 冯兴华. 闽新轴带城市铁路网络及可达性演变研究[J]. 长江流域资源与环境, 2019, 28(05): 1015 -1024 .