长江流域资源与环境 >> 2021, Vol. 30 >> Issue (4): 879-888.doi: 10.11870/cjlyzyyhj202104011

• 生态环境 • 上一篇    下一篇

持久性有机污染物土气交换过程影响因素分析

翁君贺1,2,沈其艳3,谈建国2,4,刘  颖1,2*   

  1. (1.同济大学环境科学与工程学院,上海 200092;2.中国气象局上海城市气候变化应对重点开放实验室,上海 200092;3.上海海洋中心气象台洋山港气象站,上海 200030;4.上海市气候中心,上海 200030)
  • 出版日期:2021-04-20 发布日期:2021-05-17

Influencing Factors of Air-soil Exchange of Persistent Organic Pollutants (POPs)

WENG Jun-he 1,2, SHEN Qi-yan 3, TAN Jian-guo 2,4, LIU Ying 1,2   

  1. (1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; 2. Key Open Laboratory of Climate Change Response in Shanghai, China Meteorological Administration, Shanghai 200092, China; 3. Shanghai Ocean Center Meteorological Station Yangshan Port Meteorological Station, Shanghai 200030, China; 4. Shanghai Climate Center, Shanghai 200030, China)
  • Online:2021-04-20 Published:2021-05-17

摘要: 持久性有机污染物(POPs)在全球范围内进行远距离传输过程中,土壤既是污染物的主要汇,又是空气中污染物的潜在来源。土气交换过程是POPs环境归宿的重要环节,该交换过程受POPs理化性质、近地面气象条件、土壤理化性质及植被覆盖等因素的影响。对近期报道的POPs土气交换过程影响因素研究进行了综述与展望,列出了研究中涉及的重要模型及公式。环境温度的变化既能改变目标物在气固相之间的分配行为,影响空气中污染物的干湿沉降和气态交换过程,也能够通过近地面温度场的梯度变化影响污染物在土气交换过程中的垂直紊流扩散。此外,近地面水平风速的变化也会影响目标物的在近地面空气中的垂直紊流扩散。土壤有机质含量及种类控制了土壤中POPs的吸附/解吸过程,土壤温度和湿度影响污染物的土气分配系数,土壤矿物组成也会影响污染物吸附和解吸过程。地面植被能够吸收和吸附空气中气态和颗粒态POPs,通过雨水淋刷和枯落物凋落转移到土壤中;植被覆盖可以减少土壤的温度变化,减少土壤中POPs的挥发。尽管近年已经取得丰硕的成果,但在土气交换过程多因素耦合影响量化评估、动态评估POPs在典型场地原位复杂环境下的土气交换通量、在区域尺度量化植被对城市中POPs土气交换的影响等方面有待开展深入研究工作。

Abstract: Soil is not only main sink but also potential source of persistent organic pollutants (POPs) in their long-range atmospheric transportation over the world. Atmosphere-soil exchange of POPs is a key process of their environmental fate, including atmosphere-surface gas (or diffusive) exchange, wet and dry deposition (or atmospheric bulk deposition). Many factors influence the process, including physico-chemical property of POPs, micrometeorological conditions, physico-chemical property of surface soils and land-covered vegetation. This paper briefly reviews the current reports on atmosphere-soil exchange of POPs and related influence factors, and outlooks the need-to-do works in the future, as well as the relative models and equations on the exchange process were listed in this work. Ambient temperature controls partitioning behavior between gas and solid phases (including between gas and particle in atmosphere and between atmosphere and soil compartments), which impact the processes of atmospheric bulk deposition and diffusive exchange between atmosphere and soil compartments. Moreover, temperature vertical profile caused by solar radiation results in a vertical eddy diffusion in air layer close to ground. Horizonal wind speed further improves the eddy diffusion, while atmospheric turbulence reduces deposition of particulate POPs in atmosphere. Soil organic matters, including organic carbons and black carbons, control the sorption and desorption processes of POPs in soil. Furthermore, temperature and humidity in surface soils impact partitioning coefficient of POPs between atmosphere and soil. Soil mineral composition also influences the sorption and desorption of POPs in soils. Vegetation can catch gaseous and particulate POPs from atmosphere by absorption and adsorption, and release them into surface soils by litter, while they can also reduce temperature variation of surface soil covered by vegetation, further decrease volatilization of POPs from soils. Although many positive results in atmosphere-soil exchange have been reported until now, there are still many works needed to develop, e.g., quantification of coupling effects of multiple factors in the atmosphere-soil exchange process, dynamic estimation on the diffusive exchange flux of POPs between atmosphere and soil under in-situ complicate conditions based on typical field study, and quantification of the effect of urban vegetation on removal of atmospheric POPs and accumulation of soil POPs in urban scale.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵 帅 | 柴立和. 流域水资源丰富度评价的MFP模型及应用[J]. 长江流域资源与环境, 2013, 22(06): 698 .
[2] 沈非, 袁甲, 黄薇薇, 查良松. 基于地学信息图谱的合肥市城市扩展时空特征及驱动力分析[J]. 长江流域资源与环境, 2015, 24(02): 202 .
[3] 项小燕, 吴甘霖, 段仁燕, 王志高, 张中信, 王广艳, 张小平. 大别山五针松种群结构及动态研究[J]. 长江流域资源与环境, 2016, 25(01): 55 -62 .
[4] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[5] 伍文琪, 罗贤, 黄玮。李运刚. 云南省水资源承载力评价与时空分布特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1385 .
[6] 王辉, 延军平, 王鹏涛, 武亚群. 多民族地区经济差异的空间格局演变[J]. 长江流域资源与环境, 2018, 27(07): 1390 .
[7] 杨宏, 李会琳, 路璐. 嘉陵江(南充段)水体及其底泥中氨氧化微生物群落空间分布特征及其与环境因子关系[J]. 长江流域资源与环境, 2018, 27(08): 1836 .
[8] 李恩康, 陆玉麒, 王 毅, 黄群芳, 郭 政. 城镇化对制度转型的影响——基于江苏13个市的脉冲响应函数分析[J]. 长江流域资源与环境, 2018, 27(09): 1919 -1927 .
[9] 魏国恩, 朱 翔, 贺清云. 环长株潭城市群空间联系演变特征与对策研究[J]. 长江流域资源与环境, 2018, 27(09): 1958 -1967 .
[10] 啜明英, 马骏, 刘德富, 杨正健. 整流幕对香溪河库湾水温特性影响数值模拟[J]. 长江流域资源与环境, 2018, 27(09): 2101 -2113 .