长江流域资源与环境 >> 2021, Vol. 30 >> Issue (5): 1202-1210.doi: 10.11870/cjlyzyyhj202105017

• 生态环境 • 上一篇    下一篇

赤水河河水溶解态微量元素空间分布及来源分析

蒋育凤1,安艳玲2,王柱红3,吴起鑫1* ,秦立1,张珏1,申渊一1   

  1. (1.贵州大学资源与环境工程学院喀斯特环境与地质灾害重点实验室,贵州 贵阳 550025;
    2.贵州理工学院,贵州 贵阳 550025;3.贵州医科大学公共卫生学院,
    教育部环境污染监测与疾病控制重点实验室,贵州 贵阳 550025)
  • 出版日期:2021-05-20 发布日期:2021-06-15

Analysis Spatial Distribution and Sources of Dissolved Trace Elements in the Water of Chishui River

JIANG Yu-feng 1, AN Yan-ling 2, WANG Zhu-hong 3, WU Qi-xin 1, QIN Li 1, ZHANG Jue 1, SHEN Yuan-yi 1   

  1. (1. Key Laboratory of Karst Environment and Geohazard, Ministry of Land and Resources, the College of Resources and
    Environmental Engineering, Guizhou University, Guiyang 550025, China;2. Guizhou Institute of Technology,
    Guiyang 550025, China;3. Key Laboratory of Environmental Pollution Monitoring and Disease Control,
    Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China)
  • Online:2021-05-20 Published:2021-06-15

摘要: 为了解人为活动对小流域微量元素的影响,以赤水河流域22条主要支流为研究对象,采集表层水样,结合多元统计分析方法对水体中8种溶解态微量元素(Al、Cr、Fe、Sr、Mn、Cd、Li和As)的含量、空间分布规律及来源进行分析。结果表明:8种微量元素的中位值浓度顺序为Sr>Fe>Al>Li>As>Cr>Cd>Mn,元素浓度总体较低,与长江源区背景值相近,其中Sr浓度中位值最高,为540.2 ug/L。空间分析表明,微量元素含量较高的子流域集中于赤水河中、上游地区。因子分析表明,As和Li的来源主要受到城市污水和工业废水的影响,Mn和Cd的来源与农业生产活动输入有密切关系,Al、Cr、Sr、Fe的来源除了与岩石矿物风化和土壤侵蚀有关外,还受到城市废水输入的影响。通过聚类分析,赤水河子流域在空间上划分为4个区域:赤水河下游段(C1),赤水河中上游段(C2),赤水河源河和渭河(C3),盐津河(C4),溶解态微量元素水平大小排序为C4>C2>C3>C1。其中Sr、Fe、As和Li浓度在C4最高,Mn和Cd浓度在C3最高,Al、Cr则在C2达到最高浓度值。

Abstract: Surface water samples were collected from 22 sampling sites in the main tributaries of Chishui river basin for dissolved trace elements analysis (Al, Fe, Sr, Mn, Cd, Li, and As). The spatial variations and source identification were determined using various multivariate statistical techniques, including correlation analysis, principal component analysis (PCA) and cluster analysis (CA). The results showed that the median concentrations of these elements were in the order of Sr>Fe>Al>Li>As>Cr>Cd>Mn. And the median concentrations of trace elements in study area were match well with the background values of Yangtze River, without significant trace elements pollution in Chishui River. Compared with other trace elements, the relatively high concentrations could be observed on Sr with a median concentration of 540.2 ug/L. Spatial structure analysis showed the high content of trace elements were mainly in the upper and middle reaches of Chishui River basin. The results of factor analysis illustrated that As and Li were mainly from domestic sewage. Mn and Cd were attributed to the cultivation. The source of Al, Cr, Sr and Fe were associated with the rock weathering and domestic sewage. Based on the clustering analysis, four spatial regions were identified: C1 (lower reaches of Chishui River Basin), C2 (middle and upper reaches of Chishui River Basin), C3 (Chishui Heyuan River Basin and Weihe River Basin), C4 (Yanjin River Basin), The trace element concentration of four regions followed by C4>C2>C3>C1. The highest concentrations of Sr, Fe, As and Li occurred in C4; while Mn and Cd in C3, Al and Cr in C2.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘丙军,邵东国,阳书敏,曹卫锋. 基于灰关联熵的汉江中下游地区水资源分配模型和方法研究[J]. 长江流域资源与环境, 2005, 14(6): 699 -703 .
[2] 胥 晓|郑伯川|陈友军. 嘉陵江流域植被景观的空间格局特征[J]. 长江流域资源与环境, 2007, 16(3): 373 .
[3] 班军梅,缪启龙,李 雄. 西南地区近50年来气温变化特征研究[J]. 长江流域资源与环境, 2006, 15(3): 346 -351 .
[4] 叶延琼,陈国阶. GIS支持下的岷江上游流域景观格局分析[J]. 长江流域资源与环境, 2006, 15(1): 112 -115 .
[5] 李玉平,蔡运龙. 浙江省耕地变化与粮食安全的分析及预测[J]. 长江流域资源与环境, 2007, 16(4): 466 .
[6] 唐 琦,虞孝感. 东南沿海经济发达地区发展趋势与问题[J]. 长江流域资源与环境, 2006, 15(5): 650 -653 .
[7] 周 静, 杨桂山, 戴胡爽. 经济发展与环境退化的动态演进——环境库兹涅茨曲线研究进展[J]. 长江流域资源与环境, 2007, 16(4): 414 .
[8] 吴绍华, 李植斌, 周生路, 陈东湘. 区域经济空间过程阻力面模型的初步研究[J]. 长江流域资源与环境, 2005, 14(5): 535 -539 .
[9] 李成芳, 曹凑贵, 汪金平, 展茗, 蔡明历. 稻鸭、稻鱼共作对稻田P素动态变化的影响[J]. 长江流域资源与环境, 2009, 18(2): 126 .
[10] 卢士强, 林卫青, 顾玉亮, 李巍, 张宏伟, 丁玲. 潮汐河口水库型饮用水水源地保护区划分技术方法[J]. 长江流域资源与环境, 2010, 19(2): 146 .