长江流域资源与环境 >> 2023, Vol. 32 >> Issue (12): 2581-2597.doi: 10.11870/cjlyzyyhj202312011

• 自然资源 • 上一篇    下一篇

重庆市植被净初级生产力时空变化特征及驱动力分析

谢慧君1,谢亚巍1*,曹聪1,2,何松1,杨洵1,2,姜巽1,龚思宇1,杨正兰3
  

  1. (1. 重庆市地质矿产勘查开发局南江水文地质工程地质队,重庆 401121;2. 重庆市地下水资源利用与环境保护实验室,重庆 401121;3. 重庆城市职业学院 重庆 402160)
  • 出版日期:2023-12-20 发布日期:2023-12-25

Spatial-temporal Variation Characteristics and Driving Forces of Vegetation Net Primary Productivity in Chongqing

XIE Hui-jun1,XIE YA-wei1,CAO Cong 1,2,HE Song1,YANG Xun1,2, JIANG Xun1,GONG Si-yu1,YANG Zheng-lan3   

  1. (1. Nanjiang Hydrogeological & Engineering Geology Brigade,Chongqing Bureau of Geology and Minerals Exploration,
     Chongqing 401121,China;2. The Key Laboratory of Chongqing Groundwater Resources Utilization and Environmental 
    Protection, Chongqing 401121,China;3. Chongqing City Vocational College,Chongqing 402160,China)
  • Online:2023-12-20 Published:2023-12-25

摘要: 植被净初级生产力(Net Primary Productivity,NPP)是陆地生态系统碳收支的重要指标,研究气候变化和人类活动对 NPP的影响规律,对于实现碳中和目标,改善生态系统功能具有重要指导意义。以MOD17A3HGF数据、气象数据、DEM 数据和土地覆盖类型数据为基础,采用趋势分析和偏导数分析方法,分析了重庆市2001~2020年植被NPP时空分布格局和变化趋势特征,量化了气候因子和人类活动对 NPP变化的贡献,并探讨引起NPP变化的驱动因素。结果表明:(1)2001~2020年重庆市NPP均值为620.29 gC m-2,空间上植被NPP呈现沿长江由西南向东北逐渐升高的分布格局。(2)近20 a重庆市NPP整体以5.38 gC m-2a-1速率变化,变化趋势以显著升高为主;岩溶区域NPP升高和降低趋势的面积占比分别为90.04%和9.96%。(3)研究时段内重庆市气候变化对NPP变化的贡献大于人类活动,人类活动对NPP变化的负向作用更为明显。非岩溶区域NPP变化主要气候影响,人类活动对NPP变化的负向作用面积占比更大。岩溶区域气候变化和人类活动对NPP变化的贡献相当,气候因子对NPP变化的负向作用面积占比(33.11%)大于人类活动(28.51%)。生态工程的实施促进了NPP的提高。(4)驱动力分析表明,研究区NPP变化主要受气候和人类活动共同主导作用,但在空间上存在明显差异。重庆西部和东北部NPP升高主要受气候和人类活动共同主导;中部NPP升高主要受气候变化主导;渝东南等岩溶区域NPP升高受人类活动主导作用更为明显,而气候条件对岩溶区域植被NPP的负作用更为明显。

Abstract: Net primary productivity (NPP) of vegetation is an important indicator of the carbon balance in terrestrial ecosystems. Studying the impact of climate change and human activities on NPP is of great significance for achieving carbon neutrality goals and improving ecosystem functions. Based on MOD17A3HGF data, meteorological data, DEM data, and land cover type data, this paper analyzed the spatiotemporal distribution pattern and trend characteristics of vegetation NPP in Chongqing from 2001 to 2020, using trend analysis and partial derivative analysis methods. The contribution of climate factors and human activities to NPP changes was quantified, and the driving factors of NPP changes were explored. The results showed that: (1) From 2001 to 2020, the average value of NPP in Chongqing was 620.29 gC m-2, and the spatial distribution of vegetation NPP showed a gradually increasing pattern from southwest to northeast along the Yangtze River. (2) In the past 20 years, the overall NPP in Chongqing changed at a rate of 5.38 gC m-2a-1, with a significant increase trend. The area proportions of increasing and decreasing trends in NPP in karst areas were 90.04% and 9.96%, respectively. (3) The contribution of climate change to NPP changes in Chongqing during the study period was greater than that of human activities, and the negative impact of human activities on NPP changes was more significant. The NPP changes in non-karst areas were mainly influenced by climate, and the negative effects of human activities on NPP changes accounted for a larger proportion. The contribution of climate change and human activities to NPP changes in karst areas was comparable, with the negative impact of climate factors on NPP changes accounting for a larger proportion (33.11%) than human activities (28.51%). The implementation of ecological engineering promoted the improvement of NPP. (4) The driving force analysis showed that the NPP changes in the study area were mainly driven by climate and human activities, but there existed significant spatial differences. The increase of NPP in the west and northeast of Chongqing was mainly driven by climate and human activities. The increase of NPP in central Chongqing was primarily driven by climate change. The increase of NPP in southeast Chongqing and other karst areas was more obviously dominated by human activities, while the negative effect of climate conditions on vegetation NPP in karst areas was more evident.


No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗友进, 韩国辉, 余端, 李燕, 廖敦秀, 谢永红, 魏朝富. 三峡库区土壤重金属污染评价及其来源[J]. 长江流域资源与环境, 2018, 27(08): 1800 .
[2] 吕浩 田辉伍 申绍祎 段辛斌 刘绍平. 岷江下游产漂流性卵鱼类早期资源现状[J]. 长江流域资源与环境, , (): 0 .
[3] 冯凡, 赵中华, 陈晨, 田园, 郦倩玉, 龚雄虎, 叶晨昊. 铜绿微囊藻对有机毒物菲的生理生态响应研究[J]. 长江流域资源与环境, 2018, 27(09): 2031 -2041 .
[4] 魏建瑛 徐建英 樊斐斐. 卧龙自然保护区植被覆盖度变化及其对地形因子的响应[J]. 长江流域资源与环境, , (): 0 .
[5] 王 磊, 李成丽.  

我国中部地区城市群多中心结构的增长效应 [J]. 长江流域资源与环境, 2018, 27(10): 2231 -2240 .

[6] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481 -2495 .
[7] 康婷婷, 徐 欢, 张春华, 胡召玲. 区域尺度农田最大光能利用率参数估算及时空变化分析[J]. 长江流域资源与环境, 2018, 27(12): 2766 -2774 .
[8] 张媛媛 袁奋强 刘东皇 陈利馥. 产业生态化水平的测度及其影响因素研究[J]. 长江流域资源与环境, , (): 0 .
[9] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[10] 舒旺, 王鹏, 肖汉玉, 刘君政, 赵君, 余小芳. 鄱阳湖流域乐安河水化学特征及影响因素[J]. 长江流域资源与环境, 2019, 28(03): 681 -690 .