长江流域资源与环境 >> 2023, Vol. 32 >> Issue (4): 821-831.doi: 10.11870/cjlyzyyhj202304013

• 生态环境 • 上一篇    下一篇

浙江省县域碳排放的时空格局与影响因素研究

祁慧博1,2,沈欣懿1,龙飞1,2*,刘梅娟1,2,高晓玮1,2   

  1. (1.浙江农林大学经济管理学院,浙江 杭州 311300;2.浙江省乡村振兴研究院,浙江 杭州 311300)
  • 出版日期:2023-04-20 发布日期:2023-04-27

Study on Spatial-temporal Pattern and Influencing Factors of County Carbon Emissions in Zhejiang Province 

QI Hui-bo1,2, SHEN Xin-yi 1, LONG Fei1,2*, LIU Mei-juan1,2, GAO Xiao-wei1,2   

  1. (1. College of Economics and Management, Zhejiang Agricultural & Forestry University, Hangzhou 311300, China;
     2. Research Academy for Rural Revitalization of Zhejiang Province, Zhejiang Agricultural & 
    Forestry University, Hangzhou 311300, China)
  • Online:2023-04-20 Published:2023-04-27

摘要: 基于2014~2020年浙江省62个县域碳排放及社会经济数据,针对浙江省县域碳排放的空间相关性与异质性进行分级。通过全域空间自相关检验分析县域碳排放的空间依赖性与时空演变特征,通过局域空间自相关检验分析县域碳排放的空间集聚性。采用空间误差STIRPAT模型对浙江省县域碳排放影响因素进行研究。结果显示:浙江省县域碳排放总量波动但总体呈增长趋势,县域碳排放具有显著的空间正相关性且空间集聚态势相对稳定;高—高集聚类型县域主要集中在省内东北部地区,低—低集聚类型县域则主要集中在省内西南部地区;县域碳排放的空间相关性和集聚性符合地理极化效应假说,县域人均GDP与碳排放还未呈现“脱钩”关系,产业规模化发展与科技创新所带来的低碳效应尚未显现;单个县域碳排放受相邻县域碳排放的正向影响,且县域之间其他影响碳排放的社会经济因素也具有空间相关性。因此,实现区域协调发展与实现“双碳”目标的政策除了从产业方面布局之外,还应注重从空间视角动态综合考虑。

Abstract: Based on the carbon emissions and social-economic data of 62 counties in Zhejiang Province from 2014 to 2020, the spatial dependence and agglomeration of county-level carbon emissions are analyzed through the spatial auto-correlation test and local spatial auto-correlation test respectively. According to the spatial-temporal characteristics of county-level carbon emissions revealed by the index of Moran′s I and Local Moran’s I, the spatial error STIRPAT model is used to study the influencing factors of county-level carbon emissions in Zhejiang Province, China. The main results are as follows: (1) The total amount of county-level carbon emissions in Zhejiang Province fluctuates and shows a growth trend. (2) County-level carbon emissions have a significant spatial correlation, and the spatial agglomeration trend is relatively stable, which is consistent with the hypothesis of the geographical polarization effect. (3) High-high agglomeration counties are concentrated in the northeast of Zhejiang Province, while low-low agglomeration counties are mainly in the southwest. (4) The relationship between county per capital GDP and carbon emissions has not been "decoupled"; the low-carbon effect brought by large-scale industrial development as well as scientific and technological innovation has not yet appeared. (5) The carbon emissions of a single county is positively affected by the carbon emissions of the neighboring counties, and other social-economic factors affecting carbon emissions among counties also have a spatial correlation. Therefore, the policy of realizing regional coordinated development and the carbon peaking and carbon neutrality goals should not only focus on industrial layout, but also pay attention to dynamic and comprehensive consideration from a spatial perspective.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[4] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[5] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[6] 胡兴坤, 高 雷, 杨 浩, 刘绍平, 陈大庆, 段辛斌 . 长江中游黄石江段鱼类早期资源现状[J]. 长江流域资源与环境, 2019, 28(01): 60 -67 .
[7] 胡晓, 余英俊, 魏永才, 洪亮, 张永年, 石小涛, 吴睿. 基于过鱼效果评估的涵洞鱼道堰式挡板性能研究与分析[J]. 长江流域资源与环境, 2019, 28(01): 134 -143 .
[8] 秦立, 付宇文, 吴起鑫, 安艳玲, 刘瑞禄, 吕婕梅, 吴振宇. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, 2019, 28(01): 175 -183 .
[9] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[10] 李科, 张萌, 刘雄军, 杨丽敏, 薛涛涛, 欧阳珊, 吴小平. 陡水湖流域大型底栖动物群落结构及其环境影响因素[J]. 长江流域资源与环境, 2019, 28(04): 939 -949 .