长江流域资源与环境 >> 2023, Vol. 32 >> Issue (8): 1724-1735.doi: 10.11870/cjlyzyyhj202308015

• 生态环境 • 上一篇    下一篇

基于生态敏感性与景观连通性的三江源国家公园生态安全格局构建与优化

胡西武1,2*,贾天朝1   

  1. (1.青海民族大学经济与管理学院,青海 西宁  810007;2.天津大学-青海民族大学双碳研究院,青海 西宁 810007)
  • 出版日期:2023-08-20 发布日期:2023-08-23

Construction and Optimization of Ecological Security Pattern in Three-River-Source National Park Based on Ecological Sensitivity and Landscape Connectivity

HU Xi-wu1,2,JIA Tian-chao1   

  1. (1. School of Economics and Management, Qinghai MinZu University, Xining 810007, China;2. Institute for Carbon Peaking and Carbon Neutrality, Tianjin University-Qinghai MinZu University, Xining 810007, China)
  • Online:2023-08-20 Published:2023-08-23

摘要: 三江源国家公园国家生态安全屏障功能突出,构建和优化其生态安全格局意义重大。运用2020年土地利用及遥感数据,构建生态敏感性评价体系,引入形态学格局空间分析方法(MSPA),采用最小累积阻力模型提取潜在生态廊道,基于重力模型识别重要生态廊道,形成三江源国家公园生态安全格局并进行功能优化。结果表明:(1)三江源国家公园生态源地面积为26 833 km2,占总面积21.80%。(2)共提取重要生态廊道9条(536.62 km)和潜在生态廊道55条(6 080.15 km),其中长江源园区、澜沧江源园区共提取潜在生态廊道45条(5 124.17 km)和重要生态廊道8条(522.10 km),黄河源园区提取潜在生态廊道10条(955.98 km)和重要生态廊道1条(14.52 km)。(3)对三江源国家公园生态功能进行优化,划分核心保护区(39 613.58 km2)、生态保育区(67 261.84 km2)、游憩展示区(10 143.44 km2)、传统利用区(6 081.34 km2),分别占32.18%、54.64%、8.24%、4.94%。研究成果可以为三江源国家公园空间规划调整及国家生态安全屏障功能优化提供参考。

Abstract: The function of the national ecological security barrier in Three-River-Source National Park is prominent, so it is of great significance to construct and optimize its ecological security pattern. Based on the land use and remote sensing data in 2020, and the morphological pattern spatial analysis method (MSPA), we constructed the ecological sensitivity evaluation system. In addition, we extracted the important ecological corridors and potential ecological corridors to form the ecological security pattern of Three-River-Source National Park. The functions of the ecological security pattern were optimized using the minimum cumulative resistance model and the gravity model. The results are as follows: (1) The ecological source area of Three-River-Source National Park was 26 833 km2, accounting for 21.80% of the total area. (2) A total of 9 important ecological corridors (536.62 km) and 55 potential ecological corridors (6 080.15 km) were extracted, among which 45 potential ecological corridors (5 124.17 km) and 8 important ecological corridors (522.10 km) were extracted from the Yangtze River Source Park and Lancang River Source Park. Meanwhile, 10 potential ecological corridors (955.98 km) and 1 important ecological corridor (14.52 km) were extracted from Huangheyuan Park. (3) Optimization of the ecological functions of Three-River-Source National Park results in a core protection area (39 613.58 km2), an ecological conservation area (67 261.84 km2), a recreation exhibition area (10 143.44 km2) and a traditional utilization area (6 081.34 km2), accounting for 32.18%, 54.64%, 8.24%, and 4.94% respectively. The results provided reference value for the spatial planning of Three-River-Source National Park and future function optimization of national ecological security barriers.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 关兴良,胡仕林,蔺雪芹,鲁莎莎. 武汉城市群城镇用地扩展的动态模式及其驱动机制[J]. 长江流域资源与环境, 2014, 23(11): 1493 .
[2] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[3] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[4] 卢德彬 毛婉柳 杨东阳 赵佳楠. 基于多源遥感数据的中国PM2.5变化趋势与影响因素分析[J]. 长江流域资源与环境, , (): 0 .
[5] 胡继亮 熊自洁 张悦 高婷. 2019年2期自然灾害水平对农户投保意愿的影响分析——基于湖北微观调查数据[J]. 长江流域资源与环境, , (): 0 .
[6] 王凯, 王玉杰, 王彬, 张守红, 王云琦, 王晨沣. 黄壤坡面土壤分离速率研究[J]. 长江流域资源与环境, 2018, 27(09): 2114 -2121 .
[7] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[8] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[9] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[10] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .